首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A very rapid hemolysis was found to be caused by active oxygen species produced by a hypoxanthine-xanthine oxidase system with very low concentrations of hypoxanthine. The addition of superoxide dismutase or catalase inhibited the hemolysis, indicating that O2- and H2O2 participate in this system. The extent of erythrocyte hemolysis was found to depend on the sex of the human donor. The change in phospholipid composition before and after hemolysis in human erythrocytes from donors of each sex was compared by thin layer chromatography. A significant decrease in phosphatidylethanolamine content and a concomitant increase in altered phospholipid fraction were observed in erythrocytes from male donors, suggesting that these erythrocytes were easily attacked by active oxygen species to produce modified phosphatidylethanolamine.  相似文献   

2.
Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.  相似文献   

3.
As previously reported, the membrane fraction of liquid paraffin-induced, guinea pig peritoneal macrophages exhibits an NADPH-dependent hemolytic activity toward sheep erythrocytes. This activity was inhibited with N-ethylmaleimide, superoxide dismutase, cytochrome c, catalase, desferrioxamine, mannitol, and benzoate. These inhibition profiles indicate that O2- generation by the NADPH oxidase, peroxidation of the membranous lipids with H2O2 or .OH secondarily formed from O2-, and hemolysis of sheep erythrocytes with the peroxides occur in this order in the hemolytic reaction. In fact, the lipid peroxides were found to be formed in the membrane fraction in the presence of Fe3+, subsequent to the O2- generation, and to act as a final hemolytic agent.  相似文献   

4.
Activation of phagocytic NADPH oxidase requires association of its cytosolic subunits with the membrane-bound flavocytochrome. Extensive phosphorylation of the p47(phox) subunit of NADPH oxidase marks the initiation of this activation process. The p47(phox) subunit then translocates to the plasma membrane, bringing the p67(phox) subunit to cytochrome b558 to form the active NADPH oxidase complex. However, the detailed mechanism for targeting the p47(phox) subunit to the cell membrane during activation still remains unclear. Here, we show that the p47(phox) PX domain is responsible for translocating the p47(phox) subunit to the plasma membrane for subsequent activation of NADPH oxidase. We also demonstrate that translocation of the p47(phox) PX domain to the plasma membrane is not due to interactions with phospholipids but rather to association with the actin cytoskeleton. This association is mediated by direct interaction between the p47(phox) PX domain and moesin.  相似文献   

5.
The superoxide (O2-)-forming NADPH oxidase of resting macrophages can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). O2- production requires the cooperation of membrane-associated and cytosolic components. The membrane component can be solubilized by octyl glucoside yielding a highly active oxidase preparation. High performance gel filtration of the solubilized oxidase on Superose 12 in the presence of 40 mM octyl glucoside leads to the total loss of enzymatic activity. This can be restored in previously inactive eluate fractions by "reconstitution" with N-ethylmaleimide or heat (60 degrees C)-inactivated total solubilized membrane. Oxidase activity, that becomes evident upon reconstitution, is eluted from Superose 12 with molecules in the Mr range of 300,000-71,000. The material with reconstitutive capacity is completely dissociated from the oxidase, eluting with molecules in the Mr range of 71,000-11,000. The Superose 12 elution profile of the material responsible for reconstitution coincides with that of membrane-derived phospholipid. Also, the reconstitutive capacity of total solubilized membrane and that of the Mr 71,000-11,000 region of the Superose eluate are recovered in a chloroform extract prepared by the method of Bligh and Dyer. It is concluded that loss of oxidase activity by gel filtration at a high octyl glucoside concentration is the consequence of delipidation. NADPH oxidase activity, revealed by reconstitution of Superose 12 fractions with exogenous phospholipid, correlates closely with the elution profile of cytochrome b559. Reconstitution of activity of delipidated oxidase can also be achieved with natural non-macrophage phospholipids and with synthetic phospholipids. Reconstitution of NADPH oxidase activity by lipids is governed by the following rules: (a) phospholipids are effective; lysophospholipids and neutral lipids are not; (b) phospholipids with polar heads represented by choline, ethanolamine, and serine, as well as cardiolipin, are effective; phosphatidylinositol is much less active; (c) phospholipids with unsaturated fatty acid residues are capable of reconstitution while saturated acyl residues do not confer activity; this specificity appears not to be related to the transition temperature of the phospholipids.  相似文献   

6.
The superoxide-producing phagocyte NADPH oxidase consists of a membrane-bound flavocytochrome b558 complex, and cytosolic factors p47phox, p67phox and the small GTPase Rac, which translocate to the membrane to assemble the active complex following cell activation. We here show that insolubility of NADPH oxidase subunits in nonionic detergents TX-100, Brij-58, and Brij-98 is a consequence of inclusion into cholesterol-enriched membrane microdomains (lipid rafts). Thus, flavocytochrome b558, in a cholesterol-dependent manner, segregated to the bouyant low-density detergent-resistant membrane (DRM) fraction, and the cytosolic NADPH oxidase factors associated dynamically with low-density DRM. Further, superoxide production following cholesterol depletion was severely compromised in intact cells or in a cell-free reconstituted system, correlating with a reduced translocation of cytosolic phox subunits to the membrane. In analogy with the widely accepted role of lipid rafts as signaling platforms, our data indicate that cholesterol-enriched microdomains act to recruit and/or organize the cytosolic NADPH oxidase factors in the assembly of the active NADPH oxidase.  相似文献   

7.
In a fully soluble system from resting human neutrophils, activation of the respiratory burst oxidase under defined conditions was found to follow first-order kinetics. The manner in which this first-order activation process varied with the concentrations of the individual components in the activating system suggested the following. 1) The respiratory burst oxidase occurs in two forms that can be distinguished by their Km values for NADPH. The low-affinity form contains one component (M) from the membrane and two components (S and C alpha) from the cytosol, while the high-affinity form contains an extra cytosolic component (C beta). 2) The active forms of the oxidase are generated in the following reactions: (formula; see text) where S is a stabilizing component and where M.S is an activated form of M.S that is capable of binding C alpha and C beta to produce the active oxidase species M.S.C alpha (the low-affinity form) and M.S.C alpha C beta (the high-affinity form). 3) SDS activates the oxidase by mediating the conversion of M.S to M.S.  相似文献   

8.
The NADPH-dependent superoxide-generating oxidase of pig neutrophils is activated by sodium dodecyl sulfate in a cell-free system. The activation requires both membrane and cytosolic components. The membrane component was effectively extracted with 0.75% octyl glucoside and the extract was fractionated by wheat-germ-agglutinin-agarose column chromatography. The chromatography resulted in loss of the O2--generating activity in the cell-free system. The activity, however, was restored by the reconstitution with the fraction which passed through the column (fraction A) and the one eluted with N-acetylglucosamine (fraction B) using an octyl glucose dilution procedure: both fractions were pre-mixed in the presence of 0.75% octyl glucoside and diluted by putting the mixture into the detergent-free assay mixture. The latter fraction was copurified with cytochrome b558, the content of which is 2.12 +/- 0.53 nmol/mg protein (mean +/- SD, n = 5). The potency of fraction B in the reconstitution of the O2--generating activity was lost by heat treatment and decreased by protease treatment, whereas that of fraction A was not affected. Fraction A in the reconstitution of the O2--generating activity was replaced by lipid extracted from fraction A, furthermore, by exogenous phospholipid, azolectin. The O2--generating activity reconstituted with azolectin and the partially purified component in fraction B was dependent on SDS, cytosol and the concentrations of azolectin and FAD. The activity was sensitive to p-chloromercuribenzoate but not to azide. The maximal activity was obtained at pH 7.0-7.5. The Km values for NADPH and NADH were 0.024 mM and 0.57 mM, respectively. These properties were consistent with those of the NADPH oxidase responsible for the respiratory burst. The activity in the reconstitution system was 20.5 +/- 3.5 mumol O2-.min-1.mg-1 membrane-derived protein (mean +/- SD, n = 5) which shows that the membrane component was purified about 100-fold. These findings indicate that cytochrome b558 is probably a membrane component of the O2--generating NADPH oxidase and its activation in the cell-free system requires the reconstitution with phospholipids.  相似文献   

9.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 1740-1743). NADPH oxidase from unstimulated human neutrophils was detected only in the membrane fraction. The soluble activation factor was localized entirely to the cytosolic fraction and exhibited two peaks of activity when partially purified under nondenaturing conditions: a major peak with a molecular mass of approximately 250 kDa and a variable minor peak with a mass of approximately 40 kDa. Both forms activated NADPH oxidase in a similar manner and did not exhibit synergy when combined. The cytosolic factor is not protein kinase C (or another kinase) as both peaks of factor activity could be resolved from the protein kinase C peak and neither required calcium or ATP to activate the oxidase. Activation of NADPH oxidase did require the simultaneous presence of the membrane fraction, the cytosolic factor, arachidonic acid, and magnesium. Following activation, however, only the membrane fraction was then required for O2- production. Cytosolic factor levels were normal in five patients with either X-linked or autosomal recessive cytochrome b-negative chronic granulomatous disease. In contrast, the membrane fractions from each failed to generate O2-, indicating that the defects in these two genetic forms of chronic granulomatous disease reside either in the oxidase itself or in a membrane component required for activation.  相似文献   

10.
NADPH oxidase is a multi-subunit enzyme complex responsible for superoxide generation in many cells, for example, B-lymphocytes and osteoclasts. NADPH oxidase is localized on the cell surface and generates superoxide extracellularly. After synthesis, components of this oxidase are transported to the cell membrane where the functional NADPH oxidase complex is assembled. The mechanism by which the membrane-bound components are transported to the cell surface of osteoclasts remains unclear. In this study, we examined the role of tyrosine kinase activity in the transport of NADPH oxidase components. When B-lymphocytes and osteoclasts were treated with herbimycin A, a specific inhibitor of tyrosine kinase, superoxide production was significantly decreased. The amount of p91, the catalytic subunit of NADPH oxidase, was decreased in the cellular membrane of herbimycin A treated cells compared to untreated controls. Similar results were obtained for the movement of a regulatory subunit of the NADPH oxidase complex, p47, in B-lymphocytes. Thus, inhibition of tyrosine kinase decreases superoxide production by disrupting the translocation of the NADPH oxidase complex.  相似文献   

11.
Professional phagocytes (neutrophils, eosinophils, monocytes and macrophages) possess an enzymatic complex, the NADPH oxidase, which is able to catalyze the one-electron reduction of molecular oxygen to superoxide, O2-. The NADPH oxidase is dormant in non-activated phagocytes. It is suddenly activated upon exposure of phagocytes to the appropriate stimuli and thereby contributes to the microbicidal activity of these cells. Oxidase activation in phagocytes involves the assembly, in the plasma membrane, of membrane-bound and cytosolic components of the oxidase complex, which were diassembled in the resting state. One of the membrane-bound components in resting phagocytes has been identified as a low-potential b-type cytochrome, a heterodimer composed of two subunits of 22-kDa and 91-kDa. The link between NADPH and cytochrome b is probably a flavoprotein whose subcellular localization in resting phagocytes remains to be determined. Genetic defects in the cytochrome b subunits and in the cytosolic factors have been shown to be the molecular basis of chronic granulomatous disease, a group of inherited disorders in the host defense, characterized by severe, recurrent bacterial and fungal infections in which phagocytic cells fail to generate O2- upon stimulation. The present review is focused on recent data concerning the signaling pathway which leads to oxidase activation, including specific receptors, the production of second messengers, the organization of the oxidase complex and the molecular defects responsible for granulomatous disease.  相似文献   

12.
The respiratory burst oxidase is a multicomponent membrane-bound enzyme that uses NADPH to reduce oxygen to O2-. When oxidase-containing membranes from activated neutrophils are treated with 0.3 M KCl, the NADPH-binding component of the oxidase elutes from the membranes in an active form. Treatment of this eluate with [32P]NADPH dialdehyde labels an approximately 32-kDa protein that is absent from eluates obtained from normal resting membranes or from resting or activated membranes from patients with one form of chronic granulomatous disease. We propose that this approximately 32-kDa protein is the NADPH-binding component of the oxidase.  相似文献   

13.
The O2(.-)-generating oxidase of bovine neutrophils is activated in a cell-free system consisting of a particulate fraction enriched in plasma membrane and containing the dormant oxidase, a high-speed supernatant from neutrophil homogenate (cytosol), Mg ions, GTP gamma S, and arachidonic acid [Ligeti, E., Doussiere, J., & Vignais, P.V. (1988) Biochemistry 27, 193-200]. The cytosolic components participating in the activation of the membrane-bound oxidase have been investigated. These components were resolved into several active peaks by Q Sepharose chromatography. The oxidase-activating potency of these peaks was synergistically enhanced by combining samples from separate peaks, or by supplying them with a threshold amount of crude cytosol. Partial purification of two active fractions containing a limited number of proteins of 65, 56, 53, and 45 kDa was achieved by gel filtration of cytosol on Ultrogel AcA44, followed by chromatography on hydroxylapatite and Mono Q. The specific oxidase-activating potency of these partially purified fractions (activating potency per milligram of soluble protein) was 6-8-fold higher than that of crude cytosol; it was enhanced up to 75-fold by complementation with a minute amount of crude cytosol, which per se had a limited efficiency. These data indicate that oxidase activation requires more than one cytosolic component to be activated. To check whether translocation of cytosolic proteins to the membrane occurred concomitantly with oxidase activation, use was made of radiolabeled cytosolic proteins. Cytosol was treated with phenyl[14C]isothiocyanate ([14C]PITC), such that 60% of its activation potency was still present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The superoxide-forming NADPH oxidase of human neutrophils was studied in subcellular fractions of unstimulated cells. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions: alpha, azurophil granules; beta, mostly specific granules; gamma, plasma membrane, and cytosol. NADPH-dependent O2-. formation by these fractions was quantitated as the rate of superoxide dismutase-inhibitable reduction of ferricytochrome c. In the presence of cytosol, NADPH, and either arachidonic acid (optimum 90 microM) or sodium dodecyl sulfate (optimum 160 microM), 70-75% of the oxidase was in the beta fraction and about 25% was in the gamma fraction. A similar distribution was found for cytochrome b559 and FAD, two putative components of the oxidase. The reaction rates observed with arachidonic acid activation were sufficient to account for 25-75% of the O2-. generated by intact neutrophils. The properties of the beta and gamma enzymes were similar and closely resembled those of the oxidase in intact neutrophils or disrupted prestimulated cells. These included resistance to azide and cyanide, a pH optimum of 7.4, and a preference for NADPH (Km approximately 40-45 microM) rather than NADH (Km approximately 2.5 mM) as the electron donor. The combination of beta and gamma fractions displayed additive activity. The activatable oxidase required Mg2+ but not Ca2+. ATP was required for maximum reaction rates. When beta and gamma membranes were preincubated with cytosol and arachidonic acid in the presence of millimolar Mg2+ and then ultracentrifuged membrane-bound O2-. -forming activity was recovered in the pellet and the enzyme required only NADPH (i.e. no cytosol, arachidonic acid, or Mg2+) for expression of activity. These data suggest that cytosol contains a Mg2+-dependent oxidase-activating factor. Molecular sieve chromatography of cytosol indicated a single peak of activity (i.e. ability to activate O2-. generation by beta and/or gamma fraction) eluting with molecules of about 10,000 daltons.  相似文献   

15.
Rac1 and Rac2 are closely related, low molecular weight GTP-binding proteins that have both been implicated in regulation of phagocyte NADPH oxidase. This enzyme system is composed of multiple membrane-bound and cytosolic subunits and when activated catalyzes the one-electron reduction of oxygen to superoxide. Superoxide and its highly reactive derivatives are essential for killing microorganisms. Rac proteins undergo posttranslational processing, primarily the addition of an isoprenyl group to a carboxyl-terminal cysteine residue. We directly compared recombinant Rac1 and Rac2 in a human neutrophil cell-free NADPH oxidase system in which cytosol was replaced by purified recombinant cytosolic components (p47-phox and p67-phox). Processed Rac1 and Rac2 were both highly active in this system and supported comparable rates of superoxide production. Under different cell-free conditions, however, in which suboptimal amounts of cytosol were present in the assay mixture, processed Rac2 worked much better than Rac1 at all but the lowest concentrations. This suggests that a factor in the cytosol may suppress the activity of Rac1 but not of Rac2. Unprocessed Rac proteins were only weakly able to support superoxide generation in either system, but preloading of Rac1 or Rac2 with guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) restored activity. These results indicate that processing is required for nucleotide exchange but not for interaction with oxidase components.  相似文献   

16.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the reduction of oxygen to at the expense of NADPH. The enzyme is dormant in resting neutrophils but becomes active when the cells are exposed to appropriate stimuli. During oxidase activation, the highly basic cytosolic oxidase component p47(phox) becomes phosphorylated on several serines and migrates to the plasma membrane. We report here that phosphorylation of p47(phox) with protein kinase C induces conformational changes, as reflected by a fluorescence change of N, N'-di-methyl-N(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine (IANBD)-labeled p47(phox). We propose that this alteration in conformation results in the appearance of a binding site through which p47(phox) interacts with cytochrome b558 during the activation process. In addition, the present study indicates that other oxidase components, such as p67(phox) and p22(phox), influence the conformation of p47(phox).  相似文献   

17.
Sickle cell disease vasculopathy: a state of nitric oxide resistance   总被引:5,自引:0,他引:5  
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by microvascular vaso-occlusion with erythrocytes containing polymerized sickle (S) hemoglobin, erythrocyte hemolysis, vasculopathy, and both acute and chronic multiorgan injury. It is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). Hereditary and acquired hemolytic conditions release into plasma hemoglobin and other erythrocyte components that scavenge endothelium-derived NO and metabolize its precursor arginine, impairing NO homeostasis. Overproduction of ROS, such as superoxide, by enzymatic (xanthine oxidase, NADPH oxidase, uncoupled eNOS) and nonenzymatic pathways (Fenton chemistry), promotes intravascular oxidant stress that can likewise disrupt NO homeostasis. The synergistic bioinactivation of NO by dioxygenation and oxidation reactions with cell-free plasma hemoglobin and ROS, respectively, is discussed as a mechanism for NO resistance in SCD vasculopathy. Human physiological and transgenic animal studies provide experimental evidence of cardiovascular and pulmonary resistance to NO donors and reduced NO bioavailability that is associated with vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression, and end-organ injury. Emerging epidemiological data now suggest that chronic intravascular hemolysis is associated with certain clinical complications: pulmonary hypertension, cutaneous leg ulcerations, priapism, and possibly stroke. New therapeutic strategies to limit intravascular hemolysis and ROS generation and increase NO bioavailability are discussed.  相似文献   

18.
Partially reduced oxygen species are toxic, yet activated sea urchin eggs produce H2O2, suggesting that the control of oxidant stress might be critical for early embryonic development. We show that the Ca2(+)-stimulated NADPH oxidase that generates H2O2 in the "respiratory burst" of fertilization is activated by a protein kinase, apparently to regulate the synthesis of this potentially lethal oxidant. The NADPH oxidase was separated into membrane and soluble fractions that were both required for H2O2 synthesis. The soluble fraction was further purified by anion exchange chromatography. The factor in the soluble fraction that activated the membrane-associated oxidase was demonstrated to be protein kinase C (PKC) by several criteria, including its Ca2+/phophatidylserine/diacyl-glycerol-stimulated histone kinase activity, its response to phorbol ester, its inhibition by a PKC pseudosubstrate peptide, and its replacement by purified mammalian PKC. Neither calmodulin-dependent kinase II, the catalytic subunit of cyclic AMP-dependent protein kinase, casein kinase II, nor myosin light chain kinase activated the oxidase. Although the PKC family has been ubiquitously implicated in cellular regulation, enzymes that require PKC for activation have not been identified; the respiratory burst oxidase is one such enzyme.  相似文献   

19.
In this work, we report that type IV collagen, mainly via alpha2beta1-integrin ligation, was able to induce cyclin expression and G1/S transition in a colic adenocarcinoma cell line (Caco-2) cultured without soluble growth factors or fetal bovine serum. This process involved Erk 1/2 activation and the production of reactive oxygen species (ROS) by a membrane-bound NADPH oxidase. Data presented here show that NADPH oxidase-dependent production of ROS increased following alpha2beta1-integrin ligation with type IV collagen or with a specific monoclonal antibody (Gi9 mAb). NADPH oxidase activation and, therefore, the production of ROS were shown to be involved in the increase of alpha2beta1-integrin plasma membrane expression, p38 MAPK phosphorylation, cyclin expression, and G1/S transition. We thus identified in this work a new integrin-signaling pathway in colon tumor cells involved in cell cycle regulation by the extracellular matrix.  相似文献   

20.
Activation of the phagocyte NADPH oxidase involves the assembly of a membrane-localized cytochrome b559 with the cytosolic components p47(phox), p67(phox), p40(phox), and the GTPase Rac (1 or 2). In resting phagocytes, Rac is found in the cytosol as a prenylated protein in the GDP-bound form, associated with the Rho GDP dissociation inhibitor (RhoGDI). In the process of NADPH oxidase activation, Rac is dissociated from RhoGDI and translocates to the membrane, in concert with the other cytosolic components. The mechanism responsible for dissociation of Rac from RhoGDI is poorly understood. We generated Rac(1 or 2) x RhoGDI complexes in vitro from recombinant Rac(1 or 2), prenylated enzymatically, and recombinant RhoGDI, and purified these by anion exchange chromatography. Exposing Rac(1 or 2)(GDP) x RhoGDI complexes to liposomes containing four different anionic phospholipids caused the dissociation of Rac(1 or 2)(GDP) from RhoGDI and its binding to the anionic liposomes. Rac2(GDP) x RhoGDI complexes were more resistant to dissociation, reflecting the lesser positive charge of Rac2. Liposomes consisting of neutral phospholipid did not cause dissociation of Rac(1 or 2) x RhoGDI complexes. Rac1 exchanged to the hydrolysis-resistant GTP analogue, GMPPNP, associated with RhoGDI with lower affinity than Rac1(GDP) and Rac1(GMPPNP) x RhoGDI complexes were more readily dissociated by anionic liposomes. Rac1(GMPPNP) x RhoGDI complexes elicited NADPH oxidase activation in native phagocyte membrane liposomes in the presence of p67(phox), without the need for an anionic amphiphile, as activator. Both Rac1(GDP) x RhoGDI and Rac1(GMPPNP) x RhoGDI complexes elicited amphiphile-independent, p67(phox)-dependent NADPH oxidase activation in phagocyte membrane liposomes enriched in anionic phospholipids but not in membrane liposomes enriched in neutral phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号