首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ipt—GUS转录融合基因在拟南芥植物中表达,其体内细胞分裂素的含量可达到野生型的20-30倍。从拟南芥种子萌发后的6、12、20和30d四个时间分析了植物体内细胞分裂素含量的提高对其双组分信号传导系统中基因的影响。研究发现:细胞分裂素受体基因CRE1比CKI1基因更容易被增加的植物细胞分裂素诱导表达。拟南芥植物细胞分裂素反应调节基因ARR4和ARR5在植物发育的不同时期应答植物体内增加的植物细胞分裂素,ARR4的应答反应比ARR5早,种子萌发后的第6天幼苗真叶形成初期,ARR4基因被明显涛导;而ARR5的应答反应在幼苗真叶形成后的几个时间段均能检测到,并且在种子萌发后的第20天,花枝形成开始时特别明显。在双组分信号传导途径中,从受体到反应调节基因传导磷酸基团的传导基因AHP4在幼苗发育的后期种子萌发后的第20和30天,应答植物体内增加的植物细胞分裂素,并且在花枝形成初期比较明显。  相似文献   

2.
生物膜结构研究的一些进展   总被引:14,自引:1,他引:14  
膜蛋白三维结构的解析存在很多困难.最近几年由于一些通道(如K+通道,Cl-通道,水通道Aquaporin 1等)和泵(如Ca2+泵)的结晶获得成功,这些膜蛋白具有原子分辨率三维结构的解析才得以完成,从而基本阐明一些极性分子和离子选择性通过生物膜的分子机理.在膜脂结构方面,动物细胞质膜膜脂的分布是不均匀的.近年来已多方面证明,质膜具有一些被命名为“脂筏(lipid rafts)”和“质膜微囊(Caveolae)”的微区.它们富含鞘脂和胆固醇。简单介绍了这些脂质微区的大小、组分以及动态变化.根据研究结果,这类脂质微区含有大量信号分子,很可能具有信号传递中心的作用.此外,对脂筏在膜运送过程中的作用也进行一些评述.  相似文献   

3.
4.
5.
6.
The assembly of the photosynthetic apparatus requires the import of numerous cytosolically synthesised proteins and their correct targeting into or across the thylakoid membrane. Biochemical and genetic studies have revealed the operation of several targeting pathways for these proteins, some of which are used for thylakoid lumen proteins whereas others are utilised by membrane proteins. Some pathways can be traced back to the prokarytoic ancestors of chloroplasts but at least one pathway appears to have arisen in response to the transfer of genes from the organelle to the nucleus. In this article we review recent findings in this field that point to the operation of a mechanistically unique protein translocase in both plastids and bacteria, and we discuss emerging data that reconcile the remarkable variety of targeting pathways with the natures of the substrate precursor proteins.  相似文献   

7.
8.
Recent Advances in the Study of Mechanisms of Action of Phytohormones   总被引:3,自引:0,他引:3  
This review highlights recent advances in studies of mechanisms underlying the effects of five phytohormone groups: auxin, cytokinin, gibberellin, abscisic acid, and ethylene. The review summarizes data on receptors of all these phytohormones and the hormone signal transduction systems, which include second messengers, hormone-dependent trans-factors, and the genes controlled by these factors. The effects of phytohormones involve not only induction of novel protein synthesis via activation of their gene expression, but also degradation of repressor proteins through the ubiquitin system. The review contains examples of successful use of data on genes encoding enzymes of phytohormone synthesis and their receptors for development of transgenic plants with particular hormonal characteristics that provide practically valuable traits.  相似文献   

9.
A barley gene encoding the major light-harvesting chlorophyll a/b-binding protein (LHCP) has been sequenced and then expressed in vitro to produce a labelled LHCP precursor (pLHCP). When barley etiochloroplasts are incubated with this pLHCP, both labelled pLHCP and LHCP are found as integral thylakoid membrane proteins, incorporated into the major pigment-protein complex of the thylakoids. The presence of pLHCP in thylakoids and its proportion with respect to labelled LHCP depends on the developmental stage of the plastids used to study the import of pLHCP. The reduced amounts of chlorophyll in a chlorophyll b-less mutant of barley does not affect the proportion of pLHCP to LHCP found in the thylakoids when import of pLHCP into plastids isolated from the mutant plants is examined. Therefore, insufficient chlorophyll during early stages of plastid development does not seem to be responsible for their relative inefficiency in assembling pLHCP. A chase of labelled pLHCP that has been incorporated into the thylakoids of intact plastids, by further incubation of the plastids with unlabelled pLHCP, reveals that the pLHCP incorporated into the thylakoids can be processed to its mature size. Our observations strongly support the hypothesis that after import into plastids, pLHCP is inserted into thylakoids and then processed to its mature size under in vivo conditions.  相似文献   

10.
11.
Light‐harvesting complex II (LHCII) protein phosphorylation inplant chloroplasts is under complex regulation. Combination of the invivo monitoring of LHCII protein phosphorylation (by immunoblotting)with the in vitro[γ32P]ATPphosphorylation assays revealed that the basic activation/deactivationmodel of the LHCII kinase, regulated by reversible occupation/releaseof plastoquinol at the plastoquinol oxidation (Qo) siteof the cytochrome b6f (cyt b6f) complex, isconsistent with, but not sufficient to explain the data obtainedwith isolated chloroplasts, leaf discs or intact leaves. Not onlythe light conditions but also the metabolic state of the entireplant, particularly the sugar metabolism, exerted a control overLHCII protein phosphorylation. Feeding of leaves with glucose (alsowith glutathione) activated the LHCII kinase in darkness. On the otherhand, independently of the basic activation/deactivationmechanism of the kinase, a strong inhibition of LHCII protein phosphorylationoccurred in vivo at increasing irradiances and even at lowlight conditions, depending on the metabolic state of the plant.Both the experiments with intact chloroplasts and the reconstitutionexperiments with isolated thylakoids to mimic LHCII kinase inhibition,disclosed that the kinase in its activated state (plastoquinol at theQo site of cyt b6f complex) is protected againstinhibition by thiol reductants. However, directly upon deactivationof the kinase (release of plastoquinol from the Qo site) itbecomes a target for inhibition by thiol reductants. Thus the twointerdependent regulatory systems of the LHCII kinase, the constantlyoccurring activation and deactivation on the one hand and the inhibitionby thiol reductants on the other, are strongly dependent on theconcentration of reducing equivalents in the chloroplast stroma.A scheme demonstrating the interconversion of activated, deactivated andinhibited states of the LHCII kinase in the chloroplast environmentof intact leaves is presented.  相似文献   

12.
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.  相似文献   

13.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

14.
花青素转录因子调控机制及代谢工程研究进展   总被引:2,自引:0,他引:2  
花青素是广泛存在于植物中的一类重要的类黄酮化合物, 在植物生长发育和人类营养保健方面具有重要价值。花青素的生物合成途径已经解析得比较清楚, 但花青素的代谢调控网络还在不断完善。调控花青素生物合成的转录因子主要包括MYB、bHLH和WD40三大类, 这些转录因子通过激活或抑制CHSANSDFR等花青素途径关键结构基因的表达水平, 进而决定花青素积累的部位与水平。该文结合国内外花青素生物合成与转录调控方面的研究进展, 简要介绍了花青素的生物合成途径, 归纳总结了模式植物中花青素代谢调控的分子机理, 尤其是MYB、bHLH和WD40三类主要转录因子的调控机理, 以及这些转录因子在观赏植物和水果等经济作物花青素代谢工程中的应用。该文将为系统阐明花青素的转录调控机制和利用代谢工程改良花青素的相关研究提供有益参考。  相似文献   

15.
近日节律是生命体生理及行为变量遵循内源性的以接近1个太阳日的周期进行循环的生物过程,人体近日节律调控机制及其相关疾病研究已成为当前生物医学新兴领域和研究热点。过去二十年间,以生物钟基因及其相互作用环路为核心的一系列机制研究不断取得新的进展,初步形成了近日节律的分子模型,近年来,生物钟基因在染色体重塑、转录翻译调控、转录后修饰等多个层次的调控模式得到深入的研究。同时,近日节律失控与肿瘤、代谢紊乱等临床疾病的相关性及其影响机的转化研究日益增多,形成了新兴的时间医学。本文谨就近年来近日节律分子机制及其疾病相关研究的概况和最新进展做一总结。  相似文献   

16.
The emergence of shotgun proteomics has facilitated the numerous biological discoveries made by proteomic studies. However, comprehensive proteomic analysis remains challenging and shotgun proteomics is a continually changing field. This review details the recent developments in shotgun proteomics and describes emerging technologies that will influence shotgun proteomics going forward. In addition, proteomic studies of integral membrane proteins remain challenging due to the hydrophobic nature in integral membrane proteins and their general low abundance levels. However, there have been many strategies developed for enriching, isolating and separating membrane proteins for proteomic analysis that have moved this field forward. In summary, while shotgun proteomics is a widely used and mature technology, the continued pace of improvements in mass spectrometry and proteomic technology and methods indicate that future studies will have an even greater impact on biological discovery.  相似文献   

17.
18.
Cultured cerebellar granule cells underwent apoptotic degeneration when grown in medium containing 10 instead of 25 mM K+. Knowing that apoptosis is associated with changes in the expression of primary response genes, we have measured c-fos, zif/268, and c-jun mRNA levels during maturation of cultured granule cells grown in 10 or 25 mM K+. The constitutive expression of c-fos and zif/268 was differentially regulated by extracellular K+ concentration at 5 days of maturation in vitro (DIV), when cells grown under suboptimal conditions (i.e. in 10 mM K+) are committed to degenerate. At this stage, c-fos mRNA levels were detectable only in cultures grown in 25 mM K+, whereas zif/268 mRNA levels were dramatically elevated in cultures grown in 10 mM K+. This provides one of the few conditions in which c-fos and zif/268 are differentially regulated in nerve cells. Substantial changes in c-jun, or -actin mRNA levels were detectable only at 7 DIV, when the percentage of apoptotic cells had already reached a plateau in ultures grown in 10 mM K+. We speculate that changes in the expression of zif/268 are important in the gene program associated with the induction of apoptosis by trophic deprivation in cultured neurons.Special issue dedicated to Dr. Robert Balázs  相似文献   

19.
Bacteriorhodopsin (BR), halorhodopsin (HR), and rhodopsin (Rh) all belong to the class of seven-helix membrane proteins. For BR, a structural model at atomic resolution is available; for HR, diffraction data are available only down to a resolution of 6 Å in the membrane plane, and for Rh, down to 9 Å. BR and HR are closely related proteins with a sequence homology of 34%, while Rh does not share any sequence homology with BR. An atomic model for HR is derived that is based on sequence alignment and the atomic model for BR and is improved by molecular dynamics simulations. The model structure obtained accounts well for the experimentally observed difference between HR and BR in the projection map, where HR exhibits a higher density in the region between helices D and E. The reason for this difference lies partially in the different side chains and partially in slightly different helix tilts. The scattering amplitudes and phases of the model structure are calculated and agree with the experimental data down to a resolution of about 8 Å. If the helix positions are adopted from the projection map for HR and used as input in the model, this number improves to 7 Å. Analogously, an atomic model for Rh is derived based on the atomic model for BR and subjected to molecular dynamics simulations. Optimal agreement with the experimental projection map for Rh is obtained when the entire model structure is rotated slightly about two axes in the membrane plane. The agreement with the experimental projection map is not as satisfactory as for HR, but the results indicate that even for a nonhomologous, but structurally related, protein such as Rh, an acceptable model structure can be derived from the structure of BR. © 1996 Wiley-Liss, Inc.  相似文献   

20.
肿瘤相关研究一直是科研领域的重点与难点。肿瘤的发生、发展和转移与细胞质膜蛋白关系密切,质膜蛋白的过量表达、缺失或修饰,使细胞的信号转导、物质运输、黏附作用、免疫原性等发生改变,从而影响了肿瘤细胞的上述过程。简要综述了相关领域的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号