首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using 3 overlapping cDNA clones we have determined the nucleotide sequence of chicken histone H5 mRNA. The mRNA does not contain the 23 base conserved sequence element that is present at the 3' end of cell-cycle regulated histone mRNAs. Although the RNA is polyadenylated it lacks the 3' AAUAAA sequence.  相似文献   

2.
Galactosemia is an autosomal recessive disorder of human galactose metabolism caused by deficiency of the enzyme galactose-1-phosphate uridyl transferase (GALT). The molecular basis of this disorder is at present not well understood. We report here two missense mutations which result in low or undetectable enzymatic activity. First, we identified at nucleotide 591 a transition which substitutes glutamine 188 by arginine. The mutated glutamine is not only highly conserved in evolution (conserved also in Escherichia coli and Saccharomyces cerevisiae), but is also two amino acid residues downstream from the active site histidine-proline-histidine triad and results in about 10% of normal enzymatic activity. The arginine 188 mutation is the most common galactosemia mutation characterized to date. It accounts for one-fourth of the galactosemia alleles studied. Second, we report the substitution of arginine 333 by tryptophan, caused by a transition at nucleotide 1025. The area surrounding this missense mutation is the most highly conserved domain in the homologous enzymes from E. coli, yeast, and humans, and this mutation results in undetectable enzymatic activity, suggesting that this is a severe mutation. This second mutation appears to be rare, since it was found only in the patient we sequenced. Our data provide further evidence for the heterogeneity of galactosemia at the molecular level, heterogeneity which might be related to the variable clinical outcome observed in this disorder.  相似文献   

3.
DNA binding specificity of the RBP-J kappa protein was extensively examined. The mouse RBP-J kappa protein was originally isolated as a nuclear protein binding to the J kappa type V(D)J recombination signal sequence which consisted of the conserved heptamer (CACTGTG) and nonamer (GGTTTTTGT) sequences separated by a 23-base pair spacer. Electrophoretic mobility shift assay using DNA probes with mutations in various parts of the J kappa recombination signal sequence showed that the RBP-J kappa protein recognized the sequence outside the recombination signal in addition to the heptamer but did not recognize the nonamer sequence and the spacer length at all. Database search identified the best naturally occurring binding motif (CACTGTGGGAACGG) for the RBP-J kappa protein in the promoter region of the m8 gene in the Enhancer of split gene cluster of Drosophila. The binding assay with a series of m8 motif mutants indicated that the protein recognized mostly the GTGGGAA sequence and also interacted weakly with ACT and CG sequences flanking this hepta-nucleotide. Oligonucleotides binding to the RBP-J kappa protein were enriched from a pool of synthetic oligonucleotides containing 20-base random sequences by the repeated electrophoretic mobility shift assay. The enriched oligomer shared a common sequence of CGTGGGAA. All these data indicate that the RBP-J kappa protein recognizes a unique core sequence of CGTGGGAA and does not bind to the V(D)J recombination signal without the flanking sequence.  相似文献   

4.
5.
A 3.5-kb HindIII fragment of a histone gene cluster was isolated from a recombinant phage out of a duck genomic library. This DNA contains a duck H1 gene and its flanking sequences. The hybridization probe, which was used to screen for the H1 gene, had been designed on the basis of a comparative analysis of available H1 gene and protein data. Most H1 histones contain repeated motifs in their C-terminal domain, and these form part of an octapeptide (ser pro lys lys ala lys lys pro) that is highly conserved in many H1 histone proteins. A comparison of the duck H1 described here with two different published chicken H1 histone sequences reveals conservative amino acid exchanges at 22 (of 217 and 218, respectively) positions. The homology is maintained at the flanking sequences, and includes the putative H1 histone gene-specific signal structures and the established 3' stem and loop structures and the CAAGA box. The duck H1 gene and its flanking sequence have been found in identical arrangements in two recombinant bacteriophages, but minor sequence variations and genomic Southern blotting after HindIII digestion suggest that we have either isolated alleles of this genome segment or that the gene described may occur twice per haploid duck genome.  相似文献   

6.
The human cytomegalovirus (CMV) a sequence has significant homology to two regions, pac-1 and pac-2, within the a sequence of herpes simplex virus type 1 (HSV-1). Both regions have been shown to be important cis-acting signals in HSV-1 genome maturation. We have demonstrated that a small fragment from within the CMV a sequence, containing the pac-1 and pac-2 motifs, carries all of the signals necessary for generation of genomic termini and for inversion. These observations indicated that the function of these highly conserved sequence motifs was similar in CMV and HSV-1. We have identified and partially purified a host cell protein with affinity for the sequence 5'-GGCGGCGGCGCATAAAA-3' within CMV pac-2. This partially purified protein has an apparent molecular weight of 89,000 under denaturing conditions and could be renatured after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the capacity to bind DNA was the property of a single polypeptide chain. This activity was found in a wide variety of human cell lines, including those that are permissive as well as those that are nonpermissive for CMV growth, but not in cell lines from monkey, mouse, or drosophila origins. Our work implicates a host cell protein in a sequence function.  相似文献   

7.
The S-locus-specific glycoprotein of Brassica and the gene encoding it (the SLG gene) are thought to be involved in determining self-incompatibility phenotype in this genus. It has been shown that the Brassica genome contains multiple SLG-related sequences. We report here the cloning and characterization of a Brassica oleracea gene, SLR1, which corresponds to one of these SLG-related sequences. Like the SLG gene, SLR1 is developmentally regulated. It is maximally expressed in the papillar cells of the stigma at the same stage of flower development as the onset of the incompatibility response. Unlike SLG, the SLR1 genes isolated from different S-allele homozygotes are highly conserved, and this gene, which appears to be ubiquitous in crucifers, is expressed in self-compatible strains as well as self-incompatible strains. Most importantly, we show that the SLR1 gene is not linked to the S-locus and therefore cannot be a determinant of S-allele specificity in Brassica.  相似文献   

8.
Neutralizing and protective monoclonal antibodies (mAbs) were used to fine-map the highly conserved hemagglutinin noose epitope (H379-410, HNE) of the measles virus. Short peptides mimicking this epitope were previously shown to induce virus-neutralizing antibodies [El Kasmi et al. (2000) J. Gen. Virol.81, 729-735]. The epitope contains three cysteine residues, two of which (Cys386 and Cys394) form a disulfide bridge critical for antibody binding. Substitution and truncation analogues revealed four residues critical for binding (Lys387, Gly388, Gln391 and Glu395) and suggested the binding motif X7C[KR]GX[AINQ]QX2CEX5 for three distinct protective mAbs. This motif was found in more than 90% of the wild-type viruses. An independent molecular model of the core epitope predicted an amphiphilic loop displaying a remarkably stable and rigid loop conformation. The three hydrophilic contact residues Lys387, Gln391 and Glu395 pointed on the virus towards the solvent-exposed side of the planar loop and the permissive hydrophobic residues Ile390, Ala392 and Leu393 towards the solvent-hidden side of the loop, precluding antibody binding. The high affinity (Kd = 7.60 nm) of the mAb BH216 for the peptide suggests a high structural resemblance of the peptide with the natural epitope and indicates that most interactions with the protein are also contributed by the peptide. Improved peptides designed on the basis of these findings induced sera that crossreacted with the native measles virus hemagglutinin protein, providing important information about a lead structure for the design of more stable antigens of a synthetic or recombinant subunit vaccine.  相似文献   

9.
Mammalian forms of neuropeptide Y (NPY) for which the amino acid sequences have previously been determined, are the human, pig, ox, rabbit, rat, and guinea-pig polypeptides. The only difference among these forms is at position 17, where pig and ox NPY have Leu and the others Met. We now show that sheep NPY differs from all the earlier characterized mammalian forms of NPY by having Asp instead of Glu at position 10. At position 17 it has Leu as do both pig and ox NPY. Consequently, 3 different structural types of mammalian NPY are now known.  相似文献   

10.
11.
Mago Nashi, a protein initially shown to be essential in the development of the Drosophila oocyte, is highly conserved among species and shows no homology to any other known cellular proteins. Here we report the nucleotide sequence of a cDNA and a partial gene that encode rice Mago Nashi protein homologs. In addition, we present the tissue-specific expression pattern of mago nashi at the level of RNA and protein. The rice Mago Nashi protein shares at least 73% amino acid identity with all known animal homologs. Genomic DNA gel blot analysis indicates that two copies of the mago nashi gene exist in the rice genome, one of which has identical intron positions to those found in an Arabidopsis homolog. mago nashi is expressed in root, leaf and developing seed tissue as determined by RNA and protein gel blot analysis. Evidence from Drosophila, Caenorhabditis elegans and human studies of Mago Nashi suggests that a major function of this protein is its involvement in RNA localization. The highly conserved amino acid sequence of all Mago Nashi protein homologs across kingdoms suggests that the plant version of this protein may similarly be involved in RNA localization.  相似文献   

12.
T Tabata  K Sasaki    M Iwabuchi 《Nucleic acids research》1983,11(17):5865-5875
Some wheat histone H4 genes have been cloned from a Charon 4 wheat genomic DNA library using sea urchin histone H4 DNA as a probe. DNA sequence analysis of a cloned gene showed that the deduced amino acid sequence of wheat histone H4 protein was identical to that of pea. The 5' end of wheat histone H4 mRNA was mapped on the cloned gene by the S1-procedure. Southern blotting analysis of the genomic DNA indicated that histone H4 genes were reiterated 100 to 125 times per hexaploid wheat genome.  相似文献   

13.
R L Low  J M Buzan    C L Couper 《Nucleic acids research》1988,16(14A):6427-6445
Endonuclease activity identified in crude preparations of rat and human heart mitochondria has each been partially purified and characterized. Both the rat and human activities purify as a single enzyme that closely resembles the endonuclease of bovine-heart mitochondria (Cummings, O.W. et. al. (1987) J. Biol. Chem. 262:2005-2015). All three enzymes, for example elute similarly during gel filtration and DNA-cellulose chromatography, and exhibit similar enzymatic properties. Although the nucleotide sequences of the mtDNAs indicate that there has occurred an unusual degree of divergence in the displacement-loop region during mammalian evolution, the nucleotide specificities of the mt endonucleases appear highly conserved and show a striking preference for an evolutionarily-conserved sequence tract that is located upstream from the heavy (H)-strand origin of DNA replication (OriH).  相似文献   

14.
The identification of new bovine male-specific DNA sequences is of great interest because the bovine Y chromosome remains poorly characterized in terms of physical and genetic maps. Since taurine and zebu Y chromosomes are structurally different, the identification of Y-specific sequences present in both sub-species is particularly important: these sequences are of evolutionary significance and can be broadly used for embryo sexing. In this work, we initially used the random amplified polymorphic DNA (RAPD) technique to search for male-specific sequences present as monomorphic markers in genomic DNA from zebu and taurine bulls. A male-specific RAPD band was found to be present and highly conserved in both sub-species, as demonstrated by Southern blotting, fluorescent in situ hybridization (FISH) and DNA sequencing. In a previous work, a pair of primers derived from this marker was successfully used in taurine and zebu embryo sexing.  相似文献   

15.
16.
17.
Svenja Polzer 《FEBS letters》2009,583(7):1201-4222
The N-glycan g15 within the HIV-1 gp120 V3 loop efficiently blocks antibodies to facilitate viral escape from humoral immune responses. However, we have isolated primary viruses all lacking the N-glycosylation site g15 due to mutations (NNNT > YRNA, HNTV, SIQK), which showed resistance to neutralizing antibodies present in autologous or heterologous HIV-1 positive sera. When introduced into the NL4-3 background, the sequences YRNA, HNTV and SIQK caused an increase of viral infectivity and resistance to neutralization. Thus, despite the lack of g15, primary isolates can escape from neutralization because of specific mutations of the NNNT sequence altering coreceptor usage.  相似文献   

18.
Uracil-DNA glycosylase is the DNA repair enzyme responsible for the removal of uracil from DNA, and it is present in all organisms investigated. Here we report on the cloning and sequencing of a cDNA encoding the human uracil-DNA glycosylase. The sequences of uracil-DNA glycosylases from yeast, Escherichia coli, herpes simplex virus type 1 and 2, and homologous genes from varicella-zoster and Epstein-Barr viruses are known. It is shown in this report that the predicted amino acid sequence of the human uracil-DNA glycosylase shows a striking similarity to the other uracil-DNA glycosylases, ranging from 40.3 to 55.7% identical residues. The proteins of human and bacterial origin were unexpectedly found to be most closely related, 73.3% similarity when conservative amino acid substitutions were included. The similarity between the different uracil-DNA glycosylase genes is confined to several discrete boxes. These findings strongly indicate that uracil-DNA glycosylases from phylogenetically distant species are highly conserved.  相似文献   

19.
Machine and deep learning approaches can leverage the increasingly available massive datasets of protein sequences, structures, and mutational effects to predict variants with improved fitness. Many different approaches are being developed, but systematic benchmarking studies indicate that even though the specifics of the machine learning algorithms matter, the more important constraint comes from the data availability and quality utilized during training. In cases where little experimental data are available, unsupervised and self-supervised pre-training with generic protein datasets can still perform well after subsequent refinement via hybrid or transfer learning approaches. Overall, recent progress in this field has been staggering, and machine learning approaches will likely play a major role in future breakthroughs in protein biochemistry and engineering.  相似文献   

20.
Conditional mutations in the Saccharomyces cerevisiae RNA polymerase II large subunit, RPB1, were obtained by introducing a mutagenized RPB1 plasmid into yeast cells, selecting for loss of the wild-type RPB1 gene, and screening the cells for heat or cold sensitivity. Sequence analysis of 10 conditional RPB1 mutations and 10 conditional RPB2 mutations revealed that the amino acid residues altered by these distinct mutations are nearly always invariant among eucaryotic RPB1 and RPB2 homologs. These results suggest that RNA polymerase mutants might be obtained in other eucaryotic organisms by alteration of these invariant residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号