首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yellowing, which is related to the degradation of chlorophyll and chlorophyll–protein complexes, is a notable phenomenon during leaf senescence. NON-YELLOW COLORING1 ( NYC1 ) in rice encodes a membrane-localized short-chain dehydrogenase/reductase (SDR) that is thought to represent a chlorophyll  b reductase necessary for catalyzing the first step of chlorophyll  b degradation. Analysis of the nyc1 mutant, which shows the stay-green phenotype, revealed that chlorophyll  b degradation is required for the degradation of light-harvesting complex II and thylakoid grana in leaf senescence. Phylogenetic analysis further revealed the existence of NYC1-LIKE (NOL) as the most closely related protein to NYC1. In the present paper, the nol mutant in rice was also found to show a stay-green phenotype very similar to that of the nyc1 mutant, i.e. the degradation of chlorophyll  b was severely inhibited and light-harvesting complex II was selectively retained during senescence, resulting in the retention of thylakoid grana even at a late stage of senescence. The nyc1 nol double mutant did not show prominent enhancement of inhibition of chlorophyll degradation. NOL was localized on the stromal side of the thylakoid membrane despite the lack of a transmembrane domain. Immunoprecipitation analysis revealed that NOL and NYC1 interact physically in vitro . These observations suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll  b reductase in rice.  相似文献   

2.
Chlorophyll degradation is an aspect of leaf senescence, which is an active process to salvage nutrients from old tissues. non-yellow coloring1 (nyc1) is a rice (Oryza sativa) stay-green mutant in which chlorophyll degradation during senescence is impaired. Pigment analysis revealed that degradation of not only chlorophylls but also light-harvesting complex II (LHCII)-bound carotenoids was repressed in nyc1, in which most LHCII isoforms were selectively retained during senescence. Ultrastructural analysis of nyc1 chloroplasts revealed that large and thick grana were present even in the late stage of senescence, suggesting that degradation of LHCII is required for the proper degeneration of thylakoid membranes. Map-based cloning of NYC1 revealed that it encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The predicted structure of the NYC1 protein and the phenotype of the nyc1 mutant suggest the possibility that NYC1 is a chlorophyll b reductase. Although we were unable to detect the chlorophyll b reductase activity of NYC1, NOL (for NYC1-like), a protein closely related to NYC1 in rice, showed chlorophyll b reductase activity in vitro. We suggest that NYC1 and NOL encode chlorophyll b reductases with divergent functions. Our data collectively suggest that the identified SDR protein NYC1 plays essential roles in the regulation of LHCII and thylakoid membrane degradation during senescence.  相似文献   

3.
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll – protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4‐1, a stay‐green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4‐1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation‐related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity‐dependent manner. Surprisingly, the Fv/Fm value remained high in nyc4‐1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4‐1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild‐type and other non‐functional stay‐green mutants, including sgr‐2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll – protein complexes during leaf senescence is discussed.  相似文献   

4.
The senescence-induced staygreen protein regulates chlorophyll degradation   总被引:15,自引:1,他引:14  
Park SY  Yu JW  Park JS  Li J  Yoo SC  Lee NY  Lee SK  Jeong SW  Seo HS  Koh HJ  Jeon JS  Park YI  Paek NC 《The Plant cell》2007,19(5):1649-1664
  相似文献   

5.
6.
7.
The gf tomato mutant, which retains chlorophyll during ripening, has been found to be affected in leaf senescence. The leaves of the gfmutant show an absolute stay-green phenotype. As leaf senescence and fruit ripening proceed, there is a marked difference in chlorophyll content between wild-type and gf. In both attached and detached leaf studies, or after treatment with ethylene, the leaves withered and abscised in gf with only slight loss of chlorophyll and carotenoids. Total protein content declined and free amino acids increased during leaf senescence in wild-type and gf, but Western analysis showed that LHCII polypeptides were retained at higher levels in gf. Expression of senescence-related mRNAs increased normally in gf whereas those for cab, rbcS and rbcL declined in both mutant and wild-type. The mutant possesses enzyme activity for chlorophyllase, the formation of phaeophorbide a by the action of Mg-dechelatase and the oxygenolytic opening of the porphyrin macrocycle. Analysis of chlorophyll breakdown products in fruit indicated that gf, like other stay-green mutants, accumulates chlorophyllides a and b, but phaeophorbide a does not accumulate in vivo. This may indicate that, in the mutant, in vivo the action of phaeophorbide a-oxygenase is somehow presented, either by altered accessibility or transport of components required for thylakoid disassembly or the absence of another factor.  相似文献   

8.
During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.  相似文献   

9.
Isolation,characterization, and mapping of the stay green mutant in rice   总被引:25,自引:0,他引:25  
Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong-wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively. Received: 29 April 2001 / Accepted: 17 July 2001  相似文献   

10.
11.
Leaf senescence has an important role in the plant's nitrogen economy. Chlorophyll catabolism is a visible symptom of protein mobilization. Genetic and environmental factors that interfere with yellowing tend to modify protein degradation as well. The chlorophyll-protein relationship is much closer for membrane proteins than it is for soluble or total leaf proteins. In stay-greens, genotypes with a specific defect in the chlorophyll catabolism pathway, soluble protein degradation during senescence may be close to normal, but light-harvesting and reaction centre thylakoid membrane proteins are much more stable. Genes for the chlorophyll catabolism pathway and its control are important in the regulation of protein mobilization. Genes for three steps in the pathway are reported to have been isolated. The gene responsible for the stay-green phenotype in grasses and legumes has not yet been cloned but a fair amount is known about it. Pigment metabolism in senescing leaves of the Festuca-Lolium stay-green mutant is clearly disturbed and is consistent with a blockage at the ring-opening (PaO) step in chlorophyll breakdown. PaO is de novo synthesized in senescence and thought to be the key enzyme in the chlorophyll a catabolic pathway. The stay-green mutation is likely to be located in the PaO gene, or a specific regulator of it. These genes may well be in the various senescence-enhanced cDNA collections that have been generated, but functional handles on them are currently lacking. When the stay-green locus from Festuca pratensis was introgressed into Lolium temulentum, a gene encoding F. pratensis UDPG-pyrophosphorylase was shown to have been transferred on the same chromosome segment. A strategy is described for cloning the stay-green gene, based on subtractive PCR-based analyses of intergeneric introgressions and map-based cloning.  相似文献   

12.
The pepper chlorophyll retainer (cl) mutation is characterized by inhibition of chlorophyll degradation during fruit ripening. Ripe fruit of cl pepper containing chlorophyll and red carotenoids is brown, while ripe fruit containing chlorophyll and yellow carotenoids is green. In addition to the inhibitory effect during fruit ripening caused by cl, we show that chlorophyll degradation is inhibited during natural and dark-induced leaf senescence. Therefore, the cl mutation has the characteristics of the stay-green (sgr) mutants described in many other species. Upon the recent discovery of the SGR gene in various plant species, we isolated pepper SGR (CaSGR) and found that it genetically cosegregates with cl in a BC1 mapping population. Furthermore, sequencing the wild-type and mutant alleles revealed an amino-acid substitution of tryptophan (aromatic amino acid) to arginine (basic amino acid) at position 114 in the protein sequence. The single-nucleotide polymorphism (SNP) that differentiates the wild-type and mutant alleles was exploited to develop a PCR marker useful for marker-assisted selection. Expression of CaSGR as measured by semiquantitative RT-PCR was mostly induced upon fruit ripening and to a lesser extent upon leaf senescence. Taking together, our genetic, sequence and expression data all indicate that CaSGR is a candidate for controlling the cl mutation in pepper.  相似文献   

13.
Hui Z  Tian FX  Wang GK  Wang GP  Wang W 《Plant cell reports》2012,31(6):1073-1084
Wheat, which is the most important food crop worldwide, is a cereal that presents considerable potential for increased yield. A new wheat (Triticum aestivum L.) mutant tasg1 with delayed leaf senescence was constructed using ethyl methane sulfonate as a mutagen. Natural senescence in tasg1 was distinctly delayed in the field, as indicated by the slower progression of chlorophyll degradation, net photosynthetic rate than its wild type. Further, the malondialdehyde and the hydrogen peroxide content was lower and antioxidative enzyme activity higher in tasg1 than those in its wild type during both natural senescence and methyl viologen-induced oxidative stress. The results suggest that tasg1 is a functional stay-green wheat mutant with the Type B (in which senescence initiates on schedule, but progresses at a rate lower than that in the respective WTs) or Type A (in which senescence initiates late but proceeds at a normal rate) and B combination and that the competence of the antioxidant defense system is one of the most important mechanisms underlying the expression of the stay-green phenotype.  相似文献   

14.
15.
Molecular cloning and function analysis of the stay green gene in rice   总被引:6,自引:1,他引:5  
Chloroplasts undergo drastic morphological and physiological changes during senescence with a visible symptom of chlorophyll (Chl) degradation. A stay green mutant was identified and then isolated from the japonica rice (Oryza sativa) cv. Huazhiwu by gamma-ray irradiation. The stay green mutant was characterized by Chl retention, stable Chl-protein complexes, and stable thylakoid membrane structures, but lost its photosynthetic competence during senescence. The gene, designated Stay Green Rice (SGR), was cloned by a positional cloning strategy encoding an ancient protein containing a putative chloroplast transit peptide. SGR protein was found in both soluble and thylakoid membranes in rice. SGR, like the gene for pheophorbide a oxygenase (PaO), was constitutively expressed, but was upregulated by dark-induced senescence in rice leaves. Senescence-induced expression of SGR and PaO was enhanced by ABA, but inhibited by cytokinin. Overexpression of SGR reduced the number of lamellae in the grana thylakoids and reduced the Chl content of normally growing leaves. This indicates that upregulation of SGR increases Chl breakdown during senescence in rice. A small quantity of chlorophyllide a accumulated in sgr leaves, but this also accumulated in wild-type rice leaves during senescence. Some pheophorbide a was detected in sgr leaves in the dark. According to these observations, we propose that SGR may be involved in regulating or taking part in the activity of PaO, and then may influence Chl breakdown and degradation of pigment-protein complex.  相似文献   

16.
During dark-induced leaf senescence (DIS), the non-functional stay-green mutantore10 showed delayed chlorophyll (Chl) degradation and increased stability in its light-harvesting complex II (LHCII). These phenomena were closely related to the formation of aggregates that mainly consisted of terminal-truncated LHCII (Oh et al., 2003). Theore10 mutant apparently lacks the protease needed to degrade the truncated LHCII. In wild-type (WT) plants, protease was found in the thylakoid fraction, but not the soluble fraction. A similar experiment using dansylated LHCII revealed that the protease degraded both WT andore10 LHCII, indicating that its stability inore10 perhaps did not result from a defect in the LHCII polypeptides themselves. Although protease activity was not present in non-senesced WT leaves, it was induced during DIS. It also was possible to diminish the high level of protease present in the thylakoids through high-salt washing, suggesting that this enzyme is extrinsically bound to the outer surface of the stroma-exposed thylakoid regions.  相似文献   

17.
Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a stay-green phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.  相似文献   

18.
19.
Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP+-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号