首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
A very effective lytic enzyme system for massive micro/macro-scale production of protoplasts from the filamentous fungus Aspergillus nidulans is described. A striking coincidence was observed between maximal lytic activity towards Aspergillus mycelium and the presece of both chitinase and alpha-(1 leads to 3)-glucanase activities. The release of protoplasts was greatly enhanced by preincubating the mycelium with 2-deoxy-D-glucose. Furthermore, protoplast formation was influenced by fungal age, culture conditions, pH of incubation and the osmotic stabilizer used. From 40 mg of fresh mycelium, grown for 14--16 h on 1% glucose in a low phosphate-citrate medium, preincubated with 2-deoxy-D-glucose for 45 min, and then incubated with the lytic enzyme mixture at pH 6.5 in the presence of 0.3--0.4 M (NH4) SO4, 2.5 x 10(8) stable protoplasts were produced within 3 h of incubation at 30 degrees C. Comparable results were obtained with 40--50 g of mycelium. At low osmotic stabilizer concentrations a peculiar type of regeneration was observed in the presence of the lytic enzyme system; within 12 h of incubation aberrant hyphal structure emerged from the large vacuolated protoplasts.  相似文献   

2.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

3.
Three methods of quantifying chitinase activity were compared. The activities of crude chitinases of 10 bacterial isolates from different environments were estimated in terms of (1) the release of p -nitrophenol from the chromogenic chito-oligosaccharide analogues, p -nitrophenyl-β-D- N,N' -diacetylchitobiose, p -nitrophenyl- N -acetyl-β-D-glucosamine and p -nitrophenyl-β-D- N,N',N" -triacetylchitotriose, (2) the release of reducing sugars from chitin and (3) the formation of clearing zones on chitin agar. When crude chitinase from Bacillus pabuli was used the hydrolysis of p -nitrophenyl-β-D- N,N' -diacetylchitobiose correlated well with the release of reducing sugars from chitin and the formation of clearing zones on chitin agar. However, when the activity of crude chitinases from the different bacterial isolates were compared no agreement was found between the hydrolysis of p -nitrophenyl-β-D- N,N' -diacetylchitobiose and the release of reducing sugars from chitin or the formation of clearing zones on chitin agar. It was concluded that the assay with chromogenic p -nitrophenyl chito-oligosaccharide analogues is not well suited for studies that compare the chitinase activity of different bacteria.  相似文献   

4.
Family 18 chitinases have the signature peptide DGXDXDXE forming the fourth beta-strand in the (beta/alpha)8-barrel of their catalytic domain. The carboxyl-end glutamic acid, E315 in Serratia marcescens chitinase A, serves as the acid/base during chitin hydrolysis, and the side-chain of the preceding aspartic acid, D313, helps to position correctly the N-acetyl moiety of the glycosyl sugar undergoing hydrolysis. Chitin substrates are bound within a long cleft across the top of the barrel, whose floor consists of aromatic residues that hydrophobically stack with every other GlcNAc. Alanine substitution of the conserved Trp167 at the -3 subsite in Serratia marcescens chitinase A enhanced transglycosylation. Higher oligosaccharides were formed from both chitin tetra- and pentasaccharide, and the only hydrolytic product from chitin trisaccharide was the disaccharide. Greater retention of the glycosyl fragment at the active site of the -3 mutant of Serratia marcescens chitinase A might favor transglycosylation due to a stabilized conformation of its D313.  相似文献   

5.
Disposal of sludge from deinking mills represents a significant proportion of operating costs. Bioconversion of the cellulosic fraction of deinking sludge (DIS) to ethanol greatly reduces disposal costs while producing an environmentally friendly fuel. In this study, the cellulosic fraction of newsprint and deinking sludge was hydrolysed to produce fermentable sugars. For newsprint, a particle size of 1 to 1.5 mm provided optimal reaction rates in batch reactors over practical hydrolysis times, and reducing sugar concentrations as high as 35 g/L could be achieved using a fed-batch reactor configuration. For both newsprint and DIS, the hydrolysis rate increased nonlinearly with enzyme loading. Tween-80 only marginally improved sugar production but was able to release sugars from cellulosic substrates in the absence of lytic enzymes, in an amount proportional to the surfactant concentration and the substrate particle size. DIS was relatively recalcitrant to enzymatic hydrolysis, possibly due in part to inhibition by hydrophobic constituents. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
This study describes a procedure for the selective determination of endo- (EG) and exo- (ExG) cellulase activities using filter paper as the sole substrate. The procedure is based on the enzymes mode of action whereby EG activity predominantly forms insoluble reducing sugars and ExG activity soluble reducing sugars. The procedure was developed using filter paper as substrate for hydrolysis with three cellulase preparations of Hypocrea jecorina containing either endoglucanase (EG), predominantly exoglucanase (ExG) or both endo- and exoglucanase activities. Hydrolysis experiments, which were followed assessing the formation of total, soluble and insoluble reducing sugars (RS), showed that up to 30min of hydrolysis predominantly insoluble reducing sugars were formed, while after this initial hydrolysis stage soluble reducing sugar formation increased significantly, making it thus possible to measure separately EG and ExG activity. FPA activities obtained from the reaction products at different reaction times suggest that EG-activity (FPA(insol)) should be measured between 10 and 20min of hydrolysis. The proposed procedure allows to evaluate the EG and ExG activity contribution to total cellulase activity and to calculate the endo/exo activity ratio of any cellulase preparation.  相似文献   

7.
A novel hemicellulase-producing fungal strain was isolated from a local soil sample. The organism is identified as Aspergillus fumigatus based on ribosomal RNA analyses. The Aspergillus strain, designated as 2NB, produces both enzymes acting on xylan backbone (xylanase and β-xylosidase), and those acting on side chains (or accessory enzymes) notably α-arabinofuranosidase and acetyl-xylan esterase. The Asperigillus hemicellulases are characterized as having relatively low xylanase and β-xylosidase activities but high side chain removal activities. The activity ratio of side-chain acting enzymes to xylanase is higher than that of the Multifect enzyme, a commercial hemicellulase product. The potential of the novel hemicellulases in lignocelluloses bioprocessing was demonstrated with alkaline-pretreated switchgrass as lignocellulose substrate with hemicellulase supplemented with a ratio of xylanase activity to filter paper unit of 2:1. Supplement of Aspergillus hemicellulases to commercial cellulases significantly enhanced the hydrolysis of lignocellulose, achieving a 94% hydrolysis yield based on reducing sugar measurement, compared to 60% when no hemicellulase or 75% when Multifect enzyme was used under otherwise identical conditions. The significant improvement resulting from supplementing a hemicellulase mix with high side-chain removal activities suggests the importance of accessory hemicellulases in lignocellulose processing.  相似文献   

8.
AIM: Pentose-utilizing yeast development by protoplast fusion and sequential mutations and ethanol fermentation using lignocellulosic substrate. METHODS AND RESULTS: Protoplasts of thermotolerant Saccharomyces cerevisiae and mesophilic, xylose-utilizing Candida shehatae were fused by electrofusion. The fusants were selected based on their growth at 42 degrees C and ability to utilize xylose. The selected best fusant was mutated sequentially and 3 mutant fusants obtained were tested for their stability. The mutant fusant CP11 was found to be stable and used for lignocellulosic fermentation. The Prosopis juliflora wood material was hydrolysed with 1% sulphuric acid initially for 18 h at room temperature and then for 20 min at 121 degrees C. The acid hydrolysate was separated and used for detoxification by ethyl acetate and overliming. The hard cellulosic fraction was hydrolysed with Aspergillus niger crude cellulase enzyme for 18 h at 50 degrees C. The substrate (15% w/v) yielded 84 g l(-1) sugars, representing 80% (w/w) hydrolysis of carbohydrate content present in the lignocellulosic material. The acid and enzyme hydrolysates were then equally mixed and used for fermentation with the developed fusant yeast (CP11). The fusant yeast gave an ethanol yield of 0.459 +/- 0.012 g g(-1), productivity of 0.67 +/- 0.015 g l(-1) h(-1) and fermentation efficiency of 90%. CONCLUSIONS: Protoplast fusion followed by sequential mutations method gave a stable and good performing fusant with maximum utilization of reducing sugars in the media. SIGNIFICANCE AND IMPACT OF THE STUDY: This new method could be applied to develop fusants for better biotechnological applications.  相似文献   

9.
This study investigated the behavior of mannan-degrading enzymes, specifically focusing on differences with respect to their substrate specificities and their synergistic associations with enzymes from different glycoside hydrolase (GH) families. Galactosidases from Cyamopsis tetragonolobus seeds (Aga27A, GH27) and Aspergillus niger (AglC, GH36) were evaluated for their abilities to synergistically interact with mannanases from Clostridium cellulovorans (ManA, GH5) and A. niger (Man26A, GH26) in hydrolysis of guar gum and locust bean gum. Among the mannanases, Man26A was more efficient at hydrolyzing both galactomannan substrates, while among the galactosidases; Aga27A was the most effective at removing galactose substituents on both galactomannan substrates and galactose-containing oligosaccharides. An optimal protein mass ratio of glycoside hydrolases required to maximize the release of both reducing sugar and galactose residues was determined. Clear synergistic enhancement of locust bean gum hydrolysis with respect to reducing sugar release was observed when both mannanases at 75% enzyme dosage were supplemented with 25% enzyme protein dosage of Aga27A. At a protein ratio of 75% Man26A to 25% Aga27A, the presence of Man26A significantly enhanced galactose release by 25% Aga27A (2.36 fold) with locust bean gum, compared to when Aga27A was used alone at 100% enzyme protein dosage. A dosage of Aga27A at 75% and ManA at 25% protein content liberated the highest reducing sugar release on guar gum hydrolysis. A dosage of Man26A and Aga27A at 75–25% protein content, respectively, liberated reducing sugar release equivalent to that when Man26A was used alone at 100% protein content. From the findings obtained in this study, it was observed that the GH family classification of an enzyme affects its substrate specificity and synergistic interactions with other glycoside hydrolases from different families (more so than its EC classification). The GH26 Man26A and GH27 Aga27A enzymes appeared to be more promising for applications that involve the hydrolysis of galactomannan containing biomass. This method of screening for maximal compatibility between various GH families can ultimately lead to a more rational development of tailored enzyme cocktails for lignocellulose hydrolysis.  相似文献   

10.
Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively.  相似文献   

11.
The Aspergillus nigerbeta-1,4-endogalactanase encoding gene (galA) was cloned and characterized. The expression of galA in A. niger was only detected in the presence of sugar beet pectin, d-galacturonic acid and l-arabinose, suggesting that galA is coregulated with both the pectinolytic genes as well as the arabinanolytic genes. The corresponding enzyme, endogalactanase A (GALA), contains both active site residues identified previously for the Pseudomonas fluorescensbeta-1,4-endogalactanase. The galA gene was overexpressed to facilitate purification of GALA. The enzyme has a molecular mass of 48.5 kDa and a pH optimum between 4 and 4.5. Incubations of arabinogalactans of potato, onion and soy with GALA resulted initially in the release of d-galactotriose and d-galactotetraose, whereas prolonged incubation resulted in d-galactose and d-galactobiose, predominantly. MALDI-TOF analysis revealed the release of l-arabinose substituted d-galacto-oligosaccharides from soy arabinogalactan. This is the first report of the ability of a beta-1,4-endogalactanase to release substituted d-galacto-oligosaccharides. GALA was not active towards d-galacto-oligosaccharides that were substituted with d-glucose at the reducing end.  相似文献   

12.
The kinetic behavior of chitinase A1 from Bacillus circulans WL-12 was investigated using the novel fluorogenic substrates, N-deacetylated 4-methylumbelliferyl chitobiosides [GlcN-GlcNAc-UMB (2), GlcNAc-GlcN-UMB (3), and (GlcN)(2)-UMB (4)], and the results were compared with those obtained using 4-methylumbelliferyl N, N'-diacetylchitobiose [(GlcNAc)(2)-UMB (1)] as the substrate. The chitinase did not release the UMB moiety from compound 4, but successfully released UMB from the other substrates. k(cat)/K(m) values determined from the releasing rate of the UMB moiety were: 145.3 for 1, 8.3 for 2, and 0.1 s(-1) M(-1) for 3. The lack of an N-acetyl group at subsite (-1) reduced the activity to a level 0.1% of that obtained with compound 1, while the absence of the N-acetyl group at subsite (-2) reduced the relative activity to 5.7%. These observations strongly support the theory that chitinase A1 catalysis occurs via a 'substrate-assisted' mechanism. Using these novel fluorogenic substrates, we were able to quantitatively evaluate the recognition specificity of subsite (-2) toward the N-acetyl group of the substrate sugar residue. The (-2) subsite of chitinase A1 was found to specifically recognize an N-acetylated sugar residue, but this specificity was not as strict as that found in subsite (-1).  相似文献   

13.
Five locally isolated bacterial strains produced extracellular cellulase enzymes, primarily CMCase, when grown on different natural and commercial cellulosic substrates. Extracellular CMCase and avicelase activity was higher with the strain CLS-32, a Cytophaga sp., compared to four other strains. The whole-cell preparations of these isolates were found to saccharify cellulosic substrates to reducing sugars. Maximum release of reducing sugar (5.75 mg ml−1) was obtained with CLS-32 using sugar cane bagasse as growth and hydrolysis substrates.  相似文献   

14.
Summary The use of a column cellulose hydrolysis reactor with continuous enzyme recycling was demonstrated by incorporating a continuous ultrafiltration apparatus at the effluent end of the column reactor. Using this setup, over 90% (w/v) cellulose hydrolysis was achieved, resulting in an average sugar concentration of 6.8% (w/v) in the effluent stream. The output of the system was 1.98 g of reducing sugar/l/h with a ratio of 87% (w/v) of the reducing sugars being monomeric sugars. Batch hydrolysis reactors were less effective, resulting in 57% (w/v) of the cellulose being hydrolyzed. The output of the batch reactor was 1.33 g of reducing sugar/l/h with similar product concentrations and percentage of monomeric sugars. The ratio of reducing sugar/filter paper unit of cellulase activity for the column method was 69.1 mg/U as compared to only 21.2 mg/U for the batch reactor.  相似文献   

15.
Efficient conversion of the carbohydrates into fermentable sugars is crucial for industrial implementation of 2G biofuels such as bioethanol. The main objective of this study was to improve the enzymatic hydrolysis of steam pretreated triticale straw (slurry, pressed-slurry or water insoluble solids (WIS)) by optimal combination of cellulase (Cellic® CTec2) and hemicellulase (Cellic® HTec2) and incubation period for a target glucan conversion of 80 %. Among the three substrates evaluated, pressed-slurry and WIS resulted in similar sugar yields but WIS presented lower enzyme requirements. Different combinations of cellulase and endo-xylanase could provide an 80 % of glucan conversion depending on the weight assigned to constrain. The selected enzyme combination, 0.1 mL Cellic®CTec2/g WIS and 0.2 mL Cellic®HTec2/g WIS, could achieve a glucan conversion of 80 % in 45 h (desirability of 0.9). Doubling the enzyme dosage could further improve the saccharification productivity by reducing the incubation period to 37 h. The optimisation of enzymatic hydrolysis of lignocellulosic substrates, to reduce the cost of sugars production, is a compromise between substrate, enzyme dosage, incubation time and the benchmark yield, although a more favourable response can be generated with an optimised combination of enzymes.  相似文献   

16.
A thermostable chitinase was purified by chitin affinity from the culture supernatant of Bacillus cereus TKU028 with shrimp head powder (SHP) as the sole carbon/nitrogen source. TKU028 chitinase was purified using a one-step affinity adsorbent system, and the molecular mass of TKU028 chitinase (approximately 40 kDa) was then determined using SDS-PAGE. The enzyme was stable for 60 min at temperatures below 60 °C and stable over a broad pH range of 4–9 for 60 min. In addition, the temporal changes of a bacterial community in mangrove river sediment of the Tamsui River with added SHP were also analysed by PCR–denaturing gradient gel electrophoresis to investigate the effects of B. cereus TKU028 on the degradation of SHP. The 6-week incubation sample of SHP and B. cereus TKU028-amended mangrove river sediment displayed the highest amount of biomass, reducing sugar and total sugar, and some variance of bacterial community composition existed in the soils.  相似文献   

17.
Cellulose is a kind of renewable resource that is abundant in nature.It can be degraded by microorganisms such as mildew.A mildew strain with high cellulase activity was isolated from mildewy maize cob and classified as Aspergillus glaucus XC9 by morphological and 18S rRNA gene sequence analyses.We studied the effects of nitrogen source,initial pH,temperature,incubation time,medium composition,and surfactants on cellulase production.Maximal activities of carboxymethylcellulase (6,812 U/g dry koji) and filter paperase (172 U/g dry koji) were obtained in conditions as follows:initial pH,5.5-6.0;temperature,30℃;cultivation period,3-4 days;inoculum ratio,6% (vol/vol);sugarcane bagasse/wheat bran ratio,4:6.When bagasse was used as substrate and mixed with wet koji at a 1:1 (wt/wt) ratio,the yield of reducing sugars was 36.4%.The corresponding conversion rate of cellulose to reducing sugars went as high as 81.9%.The results suggest that A.glaucus XC9 is a preferred candidate for cellulase production.  相似文献   

18.
The production of extracellular acid proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on haemoglobin pH 5.0 at 37 °C. The highest acid proteolytic activity (80 U/ml) was observed in culture medium containing glucose and gelatin at 1%(w/v) at 30 °C at the third day of incubation. Cultures developed in Vogel medium with glucose at 2%(w/v) showed at about 45% of proteolytic activity when compared to the cultures with 1% of the same sugar. The optimum pH of enzymatic activity was 2.0 and the enzyme was stable at pH values ranging from 2.0 to 4.0. The optimum temperature was 40 °C and the half-lives at 40, 45 and 50 °C were 30, 10 and 5 min, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
AIMS: To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. METHODS AND RESULTS: The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. CONCLUSIONS: The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.  相似文献   

20.
Family 18 chitinases such as chitinase B (ChiB) from Serratia marcescens catalyze glycoside hydrolysis via a mechanism involving the N-acetyl group of the sugar bound to the -1 subsite. We have studied the degradation of the soluble heteropolymer chitosan, to obtain further insight into catalysis in ChiB and to experimentally assess the proposed processive action of this enzyme. Degradation of chitosans with varying degrees of acetylation was monitored by following the size-distribution of oligomers, and oligomers were isolated and partly sequenced using (1)H-NMR spectroscopy. Degradation of a chitosan with 65% acetylated units showed that ChiB is an exo-enzyme which degrades the polymer chains from their nonreducing ends. The degradation showed biphasic kinetics: the faster phase is dominated by cleavage on the reducing side of two acetylated units (occupying subsites -2 and -1), while the slower kinetic phase reflects cleavage on the reducing side of a deacetylated and an acetylated unit (bound to subsites -2 and -1, respectively). The enzyme did not show preferences with respect to acetylation of the sugar bound in the +1 subsite. Thus, the preference for an acetylated unit is absolute in the -1 subsite, whereas substrate specificity is less stringent in the -2 and +1 subsites. Consequently, even chitosans with low degrees of acetylation could be degraded by ChiB, permitting the production of mixtures of oligosaccharides with different size distributions and chemical composition. Initially, the degradation of the 65% acetylated chitosan almost exclusively yielded oligomers with even-numbered chain lengths. This provides experimental evidence for a processive mode of action, moving the sugar chain two residues at a time. The results show that nonproductive binding events are not necessarily followed by substrate release but rather by consecutive relocations of the sugar chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号