共查询到20条相似文献,搜索用时 15 毫秒
1.
Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase
Petronzelli F Riccio A Markham GD Seeholzer SH Stoerker J Genuardi M Yeung AT Matsumoto Y Bellacosa A 《The Journal of biological chemistry》2000,275(42):32422-32429
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis. 相似文献
2.
Role of MED1 (MBD4) Gene in DNA repair and human cancer 总被引:6,自引:0,他引:6
Bellacosa A 《Journal of cellular physiology》2001,187(2):137-144
The human protein MED1, also known as MBD4, was isolated in a yeast two-hybrid screening as an interactor of the mismatch repair protein MLH1. MED1 contains an N-terminal 5-methylcytosine binding domain (MBD), which allows binding to methylated DNA, and a C-terminal catalytic domain with homology to bacterial DNA damage-specific glycosylases/lyases. This suggests that DNA methylation may play a role in human DNA repair. MED1 acts as a mismatch-specific DNA N-glycosylase active on thymine, uracil, 5-fluorouracil and, weakly, 3,N(4)-ethenocytosine paired with guanine. The glycosylase activity of MED1 prefers substrates in which the G:T mismatch is present in the context of methylated or unmethylated CpG sites. Since G:T mismatches can originate via spontaneous deamination of 5-methylcytosine to thymine, MED1 appears to act as a caretaker of genomic fidelity at CpG sites. Mutagenesis caused by these deamination events is a frequent mechanism of genetic instability in cancer; thus, based on the biochemical activity of its gene product, MED1 is a candidate tumor suppressor gene. Indeed, frameshift mutations of the MED1 gene have been reported in human colorectal, gastric, endometrial, and pancreatic cancer. In the future, efforts should be directed toward investigations of the functional role of the MED1 gene in the pathogenesis, prevention, and treatment of human cancer. 相似文献
3.
Zhang W Liu Z Crombet L Amaya MF Liu Y Zhang X Kuang W Ma P Niu L Qi C 《Biochemical and biophysical research communications》2011,(3):425-428
Methyl-CpG (mCpG) binding domain protein 4 (MBD4) is a member of mammalian DNA glycosylase superfamily. It contains an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain, which is an important molecule believed to be involved in maintaining of genome stability. Herein, we determined the crystal structure of C-terminal glycosylase domain of human MBD4. And the structural alignments of other helix-hairpin-helix (HhH) DNA glycosylases show that the human MBD4 glycosylase domain has the similar active site and the catalytic mechanisms as others. But the different residues in the N-terminal of domain result in the change of charge distribution on the surface of the protein, which suggest the different roles that may relate some diseases. 相似文献
4.
Wu P Qiu C Sohail A Zhang X Bhagwat AS Cheng X 《The Journal of biological chemistry》2003,278(7):5285-5291
MBD4 is a member of the methyl-CpG-binding protein family. It contains two DNA binding domains, an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain. Limited in vitro proteolysis of mouse MBD4 yields two stable fragments: a 139-residue fragment including the MBD, and the other 155-residue fragment including the glycosylase domain. Here we show that the latter fragment is active as a glycosylase on a DNA duplex containing a G:T mismatch within a CpG sequence context. The crystal structure confirmed the C-terminal domain is a member of the helix-hairpin-helix DNA glycosylase superfamily. The MBD4 active site is situated in a cleft that likely orients and binds DNA. Modeling studies suggest the mismatched target nucleotide will be flipped out into the active site where candidate residues for catalysis and substrate specificity are present. 相似文献
5.
6.
7.
8.
Bacteriophage lambda integrase (lambda-Int) is the prototypical member of a large family of enzymes that catalyze site-specific DNA recombination via the formation of a Holliday junction intermediate. DNA strand cleavage by lambda-Int is mediated by nucleophilic attack on the scissile phosphate by a conserved tyrosine residue, forming an intermediate with the enzyme covalently attached to the 3'-end of the cleaved strand via a phosphotyrosine linkage. The crystal structure of the catalytic domain of lambda-Int (C170) obtained in the absence of DNA revealed the tyrosine nucleophile at the protein's C terminus to be located on a beta-hairpin far from the other conserved catalytic residues and adjacent to a disordered loop. This observation suggested that a conformational change in the C terminus of the protein was required to generate the active site in cis, or alternatively, that the active site could be completed in trans by donation of the tyrosine nucleophile from a neighboring molecule in the recombining synapse. We used NMR spectroscopy together with limited proteolysis to examine the dynamics of the lambda-Int catalytic domain in the presence and absence of DNA half-site substrates with the goal of characterizing the expected conformational change. Although the C terminus is indeed flexible in the absence of DNA, we find that conformational changes in the tyrosine-containing beta-hairpin are not coupled to DNA binding. To gain structural insights into C170/DNA complexes, we took advantage of mechanistic conservation with Cre and Flp recombinases to model C170 in half-site and tetrameric Holliday junction complexes. Although the models do not reveal the nature of the conformational change required for cis cleavage, they are consistent with much of the available experimental data and provide new insights into the how trans complementation could be accommodated. 相似文献
9.
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A. 相似文献
10.
Saparbaev M Langouët S Privezentzev CV Guengerich FP Cai H Elder RH Laval J 《The Journal of biological chemistry》2002,277(30):26987-26993
The promutagenic and genotoxic exocyclic DNA adduct 1,N(2)-ethenoguanine (1,N(2)-epsilonG) is a major product formed in DNA exposed to lipid peroxidation-derived aldehydes in vitro. Here, we report that two structurally unrelated proteins, the Escherichia coli mismatch-specific uracil-DNA glycosylase (MUG) and the human alkylpurine-DNA-N-glycosylase (ANPG), can release 1,N(2)-epsilonG from defined oligonucleotides containing a single modified base. A comparison of the kinetic constants of the reaction indicates that the MUG protein removes the 1,N(2)-epsilonG lesion more efficiently (k(cat)/K(m) = 0.95 x 10(-3) min(-1) nm(-1)) than the ANPG protein (k(cat)/K(m) = 0.1 x 10(-3) min(-1) nm(-1)). Additionally, while the nonconserved, N-terminal 73 amino acids of the ANPG protein are not required for activity on 1,N(6)-ethenoadenine, hypoxanthine, or N-methylpurines, we show that they are essential for 1,N(2)-epsilonG-DNA glycosylase activity. Both the MUG and ANPG proteins preferentially excise 1,N(2)-epsilonG when it is opposite dC; however, unlike MUG, ANPG is unable to excise 1,N(2)-epsilonG when it is opposite dG. Using cell-free extracts from genetically modified E. coli and murine embryonic fibroblasts lacking MUG and mANPG activity, respectively, we show that the incision of the 1,N(2)-epsilonG-containing duplex oligonucleotide has an absolute requirement for MUG or ANPG. Taken together these observations suggest a possible role for these proteins in counteracting the genotoxic effects of 1,N(2)-epsilonG residues in vivo. 相似文献
11.
12.
RecQ DNA helicases are multidomain enzymes that play pivotal roles in genome maintenance pathways. While the ATPase and helicase activities of these enzymes can be attributed to the conserved catalytic core domain, the role of the Helicase-and-RNase-D-C-terminal (HRDC) domain in RecQ function has yet to be elucidated. Here, we report the crystal structure of the E. coli RecQ HRDC domain, revealing a globular fold that resembles known DNA binding domains. We show that this domain preferentially binds single-stranded DNA and identify its DNA binding surface. HRDC domain mutations in full-length RecQ lead to surprising differences in its structure-specific DNA binding properties. These data support a model in which naturally occurring variations in DNA binding residues among diverse RecQ homologs serve to target these enzymes to distinct substrates and provide insight into a mechanism whereby RecQ enzymes have evolved distinct functions in organisms that encode multiple recQ genes. 相似文献
13.
RecG differs from most helicases acting on branched DNA in that it is thought to catalyze unwinding via translocation of a monomer on dsDNA, with a wedge domain facilitating strand separation. Conserved phenylalanines in the wedge are shown to be critical for DNA binding. When detached from the helicase domains, the wedge bound a Holliday junction with high affinity but failed to bind a replication fork structure. Further stabilizing contacts are identified in full-length RecG, which may explain fork binding. Detached from the wedge, the helicase region unwound junctions but had extremely low substrate affinity, arguing against the "classical inchworm" mode of translocation. We propose that the processivity of RecG on branched DNA substrates is dependent on the ability of the wedge to establish strong binding at the branch point. This keeps the helicase motor in contact with the substrate, enabling it to drive dsDNA translocation with high efficiency. 相似文献
14.
Deinococcus radiodurans is extremely resistant to the effects of ionizing radiation. The source of the radiation resistance is not known, but an expansion of specific protein families related to stress response and damage control has been observed. DNA repair enzymes are among the expanded protein families in D. radiodurans, and genes encoding five different uracil-DNA glycosylases are identified in the genome. Here we report the three-dimensional structure of the mismatch-specific uracil-DNA glycosylase (MUG) from D. radiodurans (drMUG) to a resolution of 1.75 angstroms. Structural analyses suggest that drMUG possesses a novel catalytic residue, Asp-93. Activity measurements show that drMUG has a modified and broadened substrate specificity compared with Escherichia coli MUG. The importance of Asp-93 for activity was confirmed by structural analysis and abolished activity for the mutant drMUGD93A. Two other microorganisms, Bradyrhizobium japonicum and Rhodopseudomonas palustris, possess genes that encode MUGs with the highest sequence identity to drMUG among all of the bacterial MUGs examined. A phylogenetic analysis indicates that these three MUGs form a new MUG/thymidine-DNA glycosylase subfamily, here called the MUG2 family. We suggest that the novel catalytic residue (Asp-93) has evolved to provide drMUG with broad substrate specificity to increase the DNA repair repertoire of D. radiodurans. 相似文献
15.
Jaeho Cha M. V. Sørensen Q.-Z. Ye D. S. Auld 《Journal of biological inorganic chemistry》1998,3(4):353-359
We have selectively replaced the catalytic zinc of the catalytic domain of stromelysin-1 (SCD) with other transition metals.
Dialysis of the enzyme against 2 mM 1,10-phenanthroline, 20 mM Hepes, pH 7.5 in the presence of 10 mM CaCl2 removes the catalytic zinc, leaving the structural zinc site intact. Dialysis with metal-free buffer followed by the new
metal ion replaces the catalytic zinc forming a metal hybrid enzyme. Full incorporation of 1 mol Co2+, Ni2+, or Cd2+/mol enzyme is confirmed by atomic absorption spectrometry while the weaker binding Mn2+ yields a value of 0.4 mol Mn2+/mol enzyme after dialysis against 1 μM Mn2+. The activity of the monozinc enzyme is <10% while its activity is restored upon the addition of zinc and other transition
metals. The k
cat values for the Co2+, Mn2+, Cd2+, and Ni2+ enzymes are respectively 99%, 54%, 19%, and 17% of the value for the native enzyme, while the respective k
cat/K
m values are 36%, 29%, 7%, and 16% toward the fluorescent heptapeptide substrate, DnsPLALRAR. The zinc and metal hybrid SCD
cleave DnsPLA↓LRAR, and DnsPLE↓LFAR, exclusively at one bond, while DnsPLA↓L↓WAR and DnsPLA↓L↓FAR are cleaved at two positions.
The double cleavage of DnsPLALWAR and DnsPLALFAR catalyzed by SCD is in marked contrast to the close structurally related
matrilysin. A notable feature of SCD catalysis is the different cleavage site specificity of the metal hybrids toward the
A-L and L-W bonds of the DnsPLALWAR substrate. Thus the k
cat values of the Co/Zn hybrid for the cleavage of the A-L bond in the DnsPLALRAR and DnsPLAWAR substrates are 5- and 8-fold
greater than those for the Cd/Zn hybrid compared to a 140-fold difference for the corresponding k
cat values for the L-W bond cleavage. These results imply that the catalytic metal of SCD is not only involved in catalysis but
also influences the substrate specificity of the enzyme.
Received: 30 December 1997 / Accepted: 23 February 1998 相似文献
16.
The mammalian DNA glycosylase-methyl-CpG binding domain protein 4 (MBD4)-is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we present three structures of the MBD4 C-terminal glycosylase domain (wild-type and its catalytic mutant D534N), in complex with DNA containing a G:T or G:5hmU mismatch. MBD4 flips the target nucleotide from the double-stranded DNA. The catalytic mutant D534N captures the intact target nucleotide in the active site binding pocket. MBD4 specifically recognizes the Watson-Crick polar edge of thymine or 5hmU via the O(2), N(3) and O(4) atoms, thus restricting its activity to thymine/uracil-based modifications while excluding cytosine and its derivatives. The wild-type enzyme cleaves the N-glycosidic bond, leaving the ribose ring in the flipped state, while the cleaved base is released. Unexpectedly, the C(1)' of the sugar has yet to be hydrolyzed and appears to form a stable intermediate with one of the side chain carboxyl oxygen atoms of D534, via either electrostatic or covalent interaction, suggesting a different catalytic mechanism from those of other DNA glycosylases. 相似文献
17.
18.
Structure of the catalytic domain of human polo-like kinase 1 总被引:2,自引:0,他引:2
Kothe M Kohls D Low S Coli R Cheng AC Jacques SL Johnson TL Lewis C Loh C Nonomiya J Sheils AL Verdries KA Wynn TA Kuhn C Ding YH 《Biochemistry》2007,46(20):5960-5971
Polo-like kinase 1 (Plk1) is an attractive target for the development of anticancer agents due to its importance in regulating cell-cycle progression. Overexpression of Plk1 has been detected in a variety of cancers, and expression levels often correlate with poor prognosis. Despite high interest in Plk1-targeted therapeutics, there is currently no structure publicly available to guide structure-based drug design of specific inhibitors. We determined the crystal structures of the T210V mutant of the kinase domain of human Plk1 complexed with the nonhydrolyzable ATP analogue adenylylimidodiphosphate (AMPPNP) or the pyrrolo-pyrazole inhibitor PHA-680626 at 2.4 and 2.1 A resolution, respectively. Plk1 adopts the typical kinase domain fold and crystallized in a conformation resembling the active state of other kinases. Comparison of the kinetic parameters determined for the (unphosphorylated) wild-type enzyme, as well as the T210V and T210D mutants, shows that the mutations primarily affect the kcat of the reaction, with little change in the apparent Km for the protein or nucleotide substrates (kcat = 0.0094, 0.0376, and 0.0049 s-1 and Km(ATP) = 3.2, 4.0, and 3.0 microM for WT, T210D, and T210V, respectively). The structure highlights features of the active site that can be exploited to obtain Plk1-specific inhibitors with selectivity over other kinases and Plk isoforms. These include the presence of a phenylalanine at the bottom of the ATP pocket, combined with a cysteine (as opposed to the more commonly found leucine) in the roof of the binding site, a pocket created by Leu132 in the hinge region, and a cluster of positively charged residues in the solvent-exposed area outside of the adenine pocket adjacent to the hinge region. 相似文献
19.
《Journal of structural biology》2022,214(4):107903
Phospholipase A and Acyltransferase 4 (PLAAT4) is a class II tumor suppressor, that also plays a role as a restrictor of intracellular Toxoplasma gondii infection through restriction of parasitic vacuole size. The catalytic N-terminal domain (NTD) interacts with the C-terminal domain (CTD), which is important for sub-cellular targeting and enzymatic function. The dynamics of the NTD main (L1) loop and the L2(B6) loop adjacent to the active site, have been shown to be important regulators of enzymatic activity. Here, we present the crystal structure of PLAAT4 NTD, determined from severely intergrown crystals using automated, laser-based crystal harvesting and data reduction technologies. The structure showed the L1 loop in two distinct conformations, highlighting a complex network of interactions likely influencing its conformational flexibility. Ensemble refinement of the crystal structure recapitulates the major correlated motions observed in solution by NMR. Our analysis offers useful insights on millisecond dynamics based on the crystal structure, complementing NMR studies which preclude structural information at this time scale. 相似文献
20.
Keil C Maskos K Than M Hoopes JT Huber R Tan F Deddish PA Erdös EG Skidgel RA Bode W 《Journal of molecular biology》2007,366(2):504-516
Human carboxypeptidase N (CPN), a member of the CPN/E subfamily of "regulatory" metallo-carboxypeptidases, is an extracellular glycoprotein synthesized in the liver and secreted into the blood, where it controls the activity of vasoactive peptide hormones, growth factors and cytokines by specifically removing C-terminal basic residues. Normally, CPN circulates in blood plasma as a hetero-tetramer consisting of two 83 kDa (CPN2) domains each flanked by a 48 to 55 kDa catalytic (CPN1) domain. We have prepared and crystallized the recombinant C-terminally truncated catalytic domain of human CPN1, and have determined and refined its 2.1 A crystal structure. The structural analysis reveals that CPN1 has a pear-like shape, consisting of a 319 residue N-terminal catalytic domain and an abutting, cylindrically shaped 79 residue C-terminal beta-sandwich transthyretin (TT) domain, more resembling CPD-2 than CPM. Like these other CPN/E members, two surface loops surrounding the active-site groove restrict access to the catalytic center, offering an explanation for why some larger protein carboxypeptidase inhibitors do not inhibit CPN. Modeling of the Pro-Phe-Arg C-terminal end of the natural substrate bradykinin into the active site shows that the S1' pocket of CPN1 might better accommodate P1'-Lys than Arg residues, in agreement with CPN's preference for cleaving off C-terminal Lys residues. Three Thr residues at the distal TT edge of CPN1 are O-linked to N-acetyl glucosamine sugars; equivalent sites in the membrane-anchored CPM are occupied by basic residues probably involved in membrane interaction. In tetrameric CPN, each CPN1 subunit might interact with the central leucine-rich repeat tandem of the cognate CPN2 subunit via a unique hydrophobic surface patch wrapping around the catalytic domain-TT interface, exposing the two active centers. 相似文献