首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have derived hybridization probes from analogous 100-base-pair segments located within the N-terminal region of gp70 coding sequences which differentiate xenotropic from mink cell focus-forming (MCF)-related murine leukemia virus (MuLV) DNAs. The MCF probe annealed to the integrated proviruses of all six MCF MuLV isolates tested; the xenotropic probe hybridized to the DNAs of all four xenotropic proviral isolates examined. No cross-hybridization was observed, and neither probe reacted with the env segments of amphotropic or ecotropic MuLV DNAs. Southern blot analysis of HindIII- or EcoRI-digested genomic DNAs from a variety of inbred laboratory mice demonstrated the presence of more MCF- than xenotropic MuLV-related segments in every strain tested.  相似文献   

2.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

3.
The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. Despite their different pathogenicity, the nucleotide sequences of the env gene of Friend MCF virus and Moloney MCF virus were quite homologous, suggesting that the putative parent sequence for the generation of both MCF viruses and the recombinational mechanism for their generation might be the same. We compare the amino acid sequences in lymphoid leukemia-inducing ecotropic Moloney virus and Moloney MCF virus, and erythroblastic leukemia-inducing ecotropic Friend virus, Friend-MCF virus, and Friend spleen focus-forming virus. The Friend MCF virus long terminal repeat was found to be 550 base pairs long. This contained two copies of the 39-base-pair tandem repeat, whereas the spleen focus-forming virus genome contained a single copy of the same sequence.  相似文献   

4.
Monoclonal antibodies which recognize a region common to Friend spleen focus-forming virus encoded gp52 and Friend mink cell focus-inducing viral gp70 were isolated. One such antibody from hybridoma 7C10 was tested extensively in immune precipitation and was found to react with a determinant on envelope gp70s of all mink cell focus-inducing, xenotropic, and amphotropic mouse retroviruses tested, but not with envelope gp70s of ecotropic viruses, including Friend, Moloney, and AKR murine leukemia viruses. Monoclonal antibody from hybridoma 7C10 precipitated a 23,000-molecular-weight fragment, derived by V8 protease digestion of Friend mink cell focus-inducing gp70. This 23,000-molecular-weight peptide was determined to derive from the amino terminus of the molecule. These results correlate well with other genetic data which indicate that endogenously acquired sequences of mink cell focus-inducing viruses are found at the 5' end of the envelope gene.  相似文献   

5.
The genome of the Friend strain of the spleen focus-forming virus (SFFV) has been analyzed by molecular hybridization. SFFV is composed of genetic sequences homologous to Friend type C helper virus (F-MuLV) and SFFV-specific sequences not present in F-MuLV. These SFFV-specific sequences are present in both the Friend and Rauscher strains of murine erythroleukemia virus. The SFFV-specific sequences are partially homologous to three separate strains of mouse xenotropic virus but not to several cloned mouse ecotropic viruses. Thus, the Friend strain of SFFV appears to be a recombinant between a portion of the F-MuLV genome and RNA sequences that are highly related to murine xenotropic viruses. The implications of the acquisition of the xenotropic virus-related sequences are discussed in relation to the leukemogenicity of SFFV, and a model for the pathogenicity of other murine leukemia-inducing viruses is proposed.  相似文献   

6.
Using the Southern blot procedure, we studied the presumed spleen focus-forming virus (SFFV) provirus integration sites in the genome of the premalignant and the malignant cells isolated during the course of Friend erythroleukemia. Two restriction endonucleases, PstI and BamHI, discriminated the presumed integrated SFFV proviruses from the endogenous xenotropic-mink cell focus-forming viral sequences. No SFFV integration sites were detectable in the premalignant cells, suggesting a random integration of SFFV proviruses in the genome of these cells. In contrast, SFFV proviruses were detected at a single or very few sites in the genome of all malignant cells we analyzed. These results indicate that the event leading to the malignant transformation in acute Friend leukemia is clonal. In two of the six animals examined, tumors cells isolated from the spleens and the livers of individual mice showed identical SFFV integration patterns. This last result suggests that in some cases different tumors in a same leukemic animal could be derived from a unique clonal event.  相似文献   

7.
Viral expression was analyzed in ten cell clones of a Friend erythroleukemia cell line (HFL/b cell line [3]), which had lost its capacity to produce infectious particles. All the ten subclones were non producers but expressed spleen focus forming virus (SFFV) polypeptides in the form of p48-p50gag and gp50-gp52env. One subclone (subclone 9) expressed the gp70env of the Friend-MuLV helper component of the Friend virus complex. Comparative analysis of viral RNA expression in one gp70- subclone (subclone 2) and in the gp70+ subclone (subclone 9) was performed using specific ecotropic env gene probe and MCF/xenotropic env gene probe. In both subclones 2 and 9, the MCF/xenotropic env gene probe detected 32S SFFV genomic RNA, 20S SFFV env gene mRNA and a 34S RNA. The ecotropic env probe failed to characterize any 38S F-MuLV genomic RNA in both clones but detected 34S RNA and 24S env mRNA in the gp70+ subclone 9. These data show that expression of a complete F-MuLV genome is not required for synthesis of env gene products.  相似文献   

8.
The myeloproliferative leukemia virus (MPLV) is a new acute leukemogenic, nonsarcomatogenic retroviral complex that is generated during the in vivo passage of a molecularly cloned Friend ecotropic helper virus. Examination of viral RNA expression in MPLV-producing cells revealed the presence of two distinct molecular species that hybridized with a long terminal repeat or an ecotropic env-specific probe but not with a xenotropic mink cell focus-forming virus env-specific probe derived from a spleen focus-forming virus: an 8.2-kilobase species corresponding to a full-length Friend murine leukemia virus (F-MuLV) and a deleted species with a genomic size of 7.4 kilobases. This deleted virus was biologically cloned by limiting dilutions and single cell cloning in Mus dunni fibroblasts. Three nonproducer clones with normal morphologies and containing one single integrated copy of the deleted virus were superinfected with F-MuLV, Moloney murine leukemia virus, Gross murine leukemia virus, mink cell focus-forming virus (HIX), or the amphotropic 1504 murine leukemia virus. All pseudotypes caused macroscopic and microscopic abnormalities in mice that were similar to those seen in the parental stock. A comparison of the physical maps of F-MuLV and MPLV, which was deduced from the restriction enzyme digests of unintegrated proviral DNAs, indicated that the MPLV-defective genome (i) is probably derived from F-MuLV, (ii) has conserved the F-MuLV gag and pol regions, and (iii) is deleted and rearranged in the env region in a manner that is clearly distinct from that of Friend or Rauscher spleen focus-forming viruses.  相似文献   

9.
We derived an amphotropic murine leukemia virus (MuLV) type-specific probe for use in Southern blot hybridizations with cloned and genomic DNAs. A 133-base-pair RsaI-RsaI fragment from the 5' env region of the amphotropic viral isolate 4070A was subcloned into M13mp18 and radiolabeled in vitro. The probe detected the proviral DNAs in mink cells infected with seven different amphotropic MuLV isolates. The probe did not cross hybridize with the DNAs of molecular clones of ecotropic, mink cell focus-forming, or xenotropic MuLVs; nor did it anneal to the proviral DNAs of four xenotropic or six mink cell focus-forming viral isolates grown in mink cells. DNAs of 12 inbred laboratory mouse strains and more than 15 different wild mouse species and subspecies were examined for the presence of endogenous amphotropic env-related fragments. Amphotropic env-related sequences were found only in the DNAs of wild mice trapped in southern California in an area previously shown to harbor mice producing infectious amphotropic virus. Restriction enzyme analyses of DNAs from these mice showed that amphotropic sequences were not present as germ line copies but were the result of congenital or horizontal infection or both in this population. The DNAs of 11 various mammalian and avian species, including both natural predators of mice and squabs from the farms with virus-positive mice, lacked amphotropic envelope-related sequences.  相似文献   

10.
As an approach to evaluating the contribution of classes of endogenous viral sequences to leukemogenesis, a genomic library was prepared from the highly tumorigenic AKR SL12.3 cell line and screened for env-containing proviruses. An extensive battery of virus-derived probes and specific oligonucleotide probes were used to segregate 83 positive clones into related groups. The nonecotropic endogenous retroviruses were identified as members of the polytropic, modified polytropic, or xenotropic groups. At least three unique xenotropic proviruses were detected that differed from the published xenotropic sequence within a variable region of the 5' portion of env. Changes among the xenotropic proviruses included relative insertions and/or deletions that maintain an open reading frame and hence the potential to encode viable envelope gene products. Several recombinant viruses were also detected. Recombination was not random and primarily involved the formation of mink cell focus-inducing class I retroviruses via recombination between polytropic elements and ecotropic virus. One other recombinant was detected which contained ecotropic virus sequences in the 5' region encoding p15 of an otherwise xenotropic provirus. An interesting observation was the finding that certain clones contained more than one provirus within the average 20-kb cloned insert. This would not be expected if integration were totally random. The de novo recombinant proviruses identified here provide a series of potential candidates to be evaluated for their contribution to the tumorigencity of the SL12.3 cell line.  相似文献   

11.
The Friend or Moloney mink cell focus-forming (MCF) virus encodes a recombinant-type envelope glycoprotein, gp70, that is closely related to the membrane glycoprotein, gp55, of Friend spleen focus-forming virus (SFFV). We have shown previously that gp55 has the ability to activate cell growth by binding to the cellular receptor for erythropoietin. Here we show that gp70 encoded by either the Friend or Moloney MCF virus also binds to the erythropoietin receptor and that coexpression of the receptor and gp70 in an interleukin-3 (IL-3)-dependent cell line can activate IL-3-independent growth. Furthermore, when the cDNA for the human IL-2 receptor beta chain, which is related by sequence to the erythropoietin receptor, was introduced into this cell line, it became growth factor independent after infection either with SFFV or with one of the two MCF viruses but not with an ecotropic virus. Based on these observations, we propose a mechanism for the early stage of leukemogenesis induced by the MCF-type murine leukemia viruses.  相似文献   

12.
Structures of somatically acquired murine leukemia virus (MuLV) genomes present in the DNA of a large panel of MuLV-induced C57BL and BALB/c B and non-T/non-B cell lymphomas were compared with those present in MuLV-induced T-cell lymphomas induced in the same low-"spontaneous"-lymphoma-incidence mice. Analyses were performed with probes specific for the gp70, p15E, and U3-long terminal repeat (LTR) regions of ecotropic AKV MuLV and a mink cell focus-forming virus (MCF)-LTR probe annealing with U3-LTR sequences of a unique endogenous xenotropic MuLV, which also hybridizes with U3-LTR sequences of a substantial portion of somatically acquired MCF genomes in spontaneous AKR thymomas. The DNAs of both T- and B-cell tumors induced by neonatal inoculation with the highly oncogenic C57BL-derived MCF 1233 virus predominantly contain integrated MCF proviruses. In contrast, the DNAs of more slowly developing B and non-T/non-B cell lymphomas induced by poorly oncogenic ecotropic or MCF C57BL MuLV isolates mostly contain somatically acquired ecotropic MuLV genomes. Approximately 50% of the spontaneous C57BL lymphoma DNAs contain somatically acquired MuLV genomes. None of the integrated MuLV proviruses annealed with the MCF-LTR probe, which indicates a clear difference in LTR structure with a substantial portion of the somatically acquired MuLV genomes present in the DNA of spontaneous AKR thymomas. This study stresses a dominant role of MuLV with ecotropic gp70 and LTR sequences in the development of slowly arising MuLV-induced B and non-T/non-B cell lymphomas.  相似文献   

13.
Differences have been observed in the kinetics of processing of the env gene polyprotein of ecotropic, xenotropic, and dual-tropic mink cell focus-forming (MCF) murine leukemia virus. In pulse-chase experiments, the env gene polyprotein of the dural-tropic MCF virus exhibits a marked increase in stability relative to that of either ecotropic or xenotropic virus. A comparison of cell surface expression of env gene products of ecotropic, xenotropic, and dual-tropic MCF murine leukemia virus has been made. Only gp70 is accessible to lactoperoxidase-catalyzed radioiodination of fibroblasts infected by ecotropic or xenotropic virus, whereas both gp70 and the env gene polyprotein are expressed on the surface of dual-tropic MCF virus-infected cells.  相似文献   

14.
The sequence of 863 contiguous nucleotides encompassing portions of the pol and env genes of NFS-Th-1 xenotropic proviral DNA was determined. This region of the xenotropic murine leukemia virus genome contains and env-specific segment that hybridizes exclusively to xenotropic and mink cell focus-forming but not to ecotropic proviral DNAs (C. E. Buckler et al., J. Virol. 41:228-236, 1982). The unique xenotropic env segment contained several characteristic deletions and insertions relative to the analogous region in AKR and Moloney ecotropic murine leukemia viruses. Portions of an endogenous env segment cloned from a BALB/c mouse embryo gene library that had a restriction map and hybridization properties typical of xenotropic viruses (A. S. Khan et al., J. Virol. 44:625-636, 1982) were also sequenced. The sequence of the endogenous env gene was very similar to the comparable region of the NFS-Th-1 xenotropic virus containing the characteristic deletions and insertions previously observed and could represent a segment of an endogenous xenotropic provirus.  相似文献   

15.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

16.
The site of recombination of a mink cell focus-inducing strain (Mo-MuLV83) derived from an ecotropic Moloney murine leukemia virus (Mo-MuLV) was mapped by fingerprint analysis of the large RNase T1-resistant oligonucleotides, employing a two-dimensional gel electrophoresis method. Mo-MuLV83, in contrast to the ecotropic Mo-MuLV, demonstrated a broadened host range, i.e., growth not only on mouse cells but also on mink cells, and recombination involved the env gene function. The genomic RNA of these two viruses shared 42 out of a total of 51 to 53 large T1 oligonucleotides (81%) and possessed a similar subunit size of 36S. Most of these T1 oligonucleotides were mapped in their relative order to the 3' polyadenylic acid end of the viral RNA molecules. There were 10 common oligonucleotides immediately next to the 3' termini. A cluster of 7 (in Mo-MuLV83) or 10 (in Mo-MuLV) unique T1 oligonucleotides were mapped next to the common sequences at the 3' end, and they all appeared concomitantly in a polyadenylic acid-containing RNA fraction with a sedimentation coefficient slightly larger than 18S. Therefore, the env gene of Mo-MuLV was situated at a location approximately 2,000 to 4,000 nucleotides from the 3' end of the genomic RNA, and the gene order of Mo-MuLV appeared to be similar to that of the more rigorously determined avian oncornaviruses. cDNA(SFFV) specific for the xenotropic sequences in the spleen focus-forming virus RNA hybridized to the cluster of unique oligonucleotides of Mo-MuLV83 RNA. This suggests that the loci of recombination involve the homologous env gene region of a xenotropic virus.  相似文献   

17.
Oligonucleotide probes specific for the Fv-1 N- and B-tropic host range determinants of the gag p30-coding sequence were used to analyze DNA clones of various murine leukemia virus (MuLV) and endogenous MuLV-related proviral genomes and chromosomal DNA from four mouse strains. The group of DNA clones consisted of ecotropic MuLVs of known Fv-1 host range, somatically acquired ecotropic MuLV proviruses, xenotropic MuLV isolates, and endogenous nonecotropic MuLV-related proviral sequences from mouse chromosomal DNA. As expected, the prototype N-tropism determinant is carried by N-tropic viruses of several different origins. All seven endogenous nonecotropic MuLV-related proviral sequence clones derived from RFM/Un mouse chromosomal DNA, although not recognized by the N probe, showed positive hybridization with the prototype B-tropism-specific probe. The two xenotropic MuLV clones derived from infectious virus (one of BALB:virus-2 and one of AKR xenotropic virus) failed to hybridize with the N- and B-tropic oligonucleotide probes tested and with one probe specific for NB-tropic Moloney MuLV. One of two endogenous xenotropic class proviruses derived from HRS/J mouse chromosomal DNA (J. P. Stoye and J. M. Coffin, J. Virol. 61:2659-2669, 1987) also failed to hybridize to the N- and B-tropic probes, whereas the other hybridized to the B-tropic probe. In addition, analysis of mouse chromosomal DNA from four strains indicates that hybridization with the N-tropic probe correlates with the presence or absence of endogenous ecotropic MuLV provirus, whereas the B-tropic probe detects abundant copies of endogenous nonecotropic MuLV-related proviral sequences. These results suggest that the B-tropism determinant in B-tropic ecotropic MuLV may arise from recombination between N-tropic ecotropic MuLV and members of the abundant endogenous nonecotropic MuLV-related classes including a subset of endogenous xenotropic proviruses.  相似文献   

18.
We used AKR/J mice to produce monoclonal antibodies specific for a neurotropic ecotropic (WM-E) virus initially isolated from wild mice. The rationale for this approach involved the observation that these mice were immunologically hyporesponsive to endogenous ecotropic virus (Akv) but fully responsive to type-specific determinants of WM-E. Hybridoma cell lines derived from mice immunized with both denatured and viable virus produced antibodies with specificity for three viral membrane-associated polypeptides, gp70, p15(E), and p15gag. Epitopes specific for WM-E virus were detected in each of these polypeptides. Cross-reactivity with Friend ecotropic virus (Friend murine leukemia virus) was observed with some gp70- and p15gag-specific antibodies, but no reactivity with endogenous Akv ecotropic virus was seen. The majority of these antibodies did not react with either xenotropic or mink cell focus-forming viruses. Two WM-E-specific anti-gp70 antibodies reacting with different determinants had virus-neutralizing activity in the absence of complement, suggesting that the respective epitopes may participate in receptor binding or virus penetration events. We used these monoclonal antibodies in initial studies to examine the replication of WM-E virus in neonatally inoculated AKR/J mice which are fully resistant to the paralytic disease induced by this virus. Since these mice express high levels of endogenous ecotropic virus, standard assays for ecotropic virus cannot be used to study this question. We present evidence that the resistance to disease does not involve a resistance to virus replication, since these mice expressed levels of viremia and virus replication in spleen and lumbar spinal cord comparable to susceptible NFS/N mice at a time when the latter began to manifest clinical signs of lower-motor-neuron pathology.  相似文献   

19.
A Mus dunni cell line has been developed that is permissive for all four classes of murine leukemia viruses (MuLV): ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. The M. dunni cells contain fewer MuLV-related sequences than do feral or domestic mouse, rat, or mink cells. Infection of the line by ecotropic MuLV induces a distinct cytopathic effect, and the cells can be readily transfected by MuLV DNA. The M. dunni line has been used to isolate an endogenous MuLV from the SC-1 feral mouse cell line.  相似文献   

20.
Although xenotropic murine leukemia viruses cannot productively infect cells of laboratory mice, cells from various wild-derived mice can support replication of these viruses. Although the virus-sensitive wild mice generally lack all or most of the xenotropic proviral genes characteristic of inbred strains, susceptibility to exogenous infection is unrelated to inheritance of these sequences. Instead, susceptibility is controlled by a single dominant gene, designated Sxv, which maps to chromosome 1. Sxv is closely linked to, but distinct from Bxv-1, the major locus for induction of xenotropic murine leukemia viruses in laboratory mice. Genetic experiments designed to characterize Sxv show that this gene also controls sensitivity to a wild mouse virus with the interference properties of mink cell focus-forming murine leukemia viruses, and that Sxv-mediated susceptibility to xenotropic murine leukemia viruses is restricted by the mink cell focus-forming virus resistance gene Rmcf. These data, together with genetic mapping of the mink cell focus-forming virus cell surface receptor locus to this same region of chromosome 1, suggest that Sxv may encode a wild mouse variant of the mink cell focus-forming virus receptor that allows penetration by xenotropic murine leukemia viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号