首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies point to a key role for the estrogen synthesizing enzyme P450 aromatase (P450 arom) in ovary determination in fish, birds and reptiles. It is unclear whether estrogen synthesis is important in sex determination of Xenopus gonad. To determine whether the aromatase gene is transcribed in the gonads of Xenopus tadpoles during the sex determination, we cloned a P450 arom cDNA and examined the level of P450 arom and estrogen receptor (ER) gene expression in association with estrogen activity. cDNA clones for P450 arom were isolated from a Xenopus ovarian cDNA library. There was an open reading frame (ORF) of 1500 bp from the ATG start to TAA stop codons encoding 500 predicted amino acids. cDNAs for P450 arom have previously been cloned from various vertebrates. The homology between the Xenopus P450 aromatase and the human P450 arom was higher. The expression of the P450 arom gene was mainly limited to reproductive organs. To determine the beginning of estrogen activity in gonads of embryos, expression of the aromatase and ER gene was also examined by RQ-RT-PCR. Both Xenopus aromatase and ER mRNA was detected at stage 51 in gonads. These observations are consistent with estrogens having a key role in ovarian development in various other vertebrates.  相似文献   

2.
3.
Cloned cDNAs, containing ribosomal protein sequences from mouse (five cDNAs) or Xenopus laevis (six cDNAs), were used to estimate the evolutionary conservation, from insects to mammals, of the corresponding mRNA sequences. Northern blot analysis reveals a variable degree of homology between these sequences in different eukaryotes. Thus, among the ribosomal protein cDNA clones utilized, some exhibit complete, others partial, and a few no interphyla cross-hybridization. Melting profile analysis was employed to quantitate this homology. It is proposed that for expansion of eukaryotic ribosomal cDNA and gene libraries, one can exploit the interspecies homology of the corresponding sequences. However, the diverse evolutionary conservation of individual ribosomal protein gene sequences should be taken into account.  相似文献   

4.
We cloned cDNAs for Xenopus aldolases A, B and C. These three aldolase genes are localized on different chromosomes as a single copy gene. In the adult, the aldolase A gene is expressed extensively in muscle tissues, whereas the aldolase B gene is expressed strongly in kidney, liver, stomach and intestine, while the aldolase C gene is expressed in brain, heart and ovary. In oocytes aldolase A and C mRNAs, but not aldolase B mRNA, are extensively transcribed. Thus, aldolase A and C mRNAs, but not B mRNA, occur abundantly in eggs as maternal mRNAs, and strong expression of aldolase B mRNA is seen only after the late neurula stage. We conclude that aldolase A and C mRNAs are major aldolase mRNAs in early stages of Xenopus embryogenesis which proceeds utilizing yolk as the only energy source, aldolase B mRNA, on the other hand, is expressed only later in development in tissues which are required for dietary fructose metabolism. We also isolated the Xenopus aldolase C genomic gene (ca. 12 kb) and found that i  相似文献   

5.
We isolated two similar, but distinct, cDNA classes that encode Xenopus double-stranded RNA (dsRNA) adenosine deaminase. The longest, full-length open reading frame (ORF) predicts a 1,270-amino acid protein of 138,754 Da that is similar in size and about 50% identical to proteins encoded by mammalian cDNAs, yet larger than the 120-kDa protein purified from Xenopus eggs. Alignments of the Xenopus and mammalian ORFs show N-terminal heterogeneity, three conserved dsRNA binding motifs (dsRBMs), and strongly conserved carboxyl termini. Consistent with the observation of two cDNA classes, northern analyses of Xenopus oocyte poly A+ RNA show at least three mRNA species. Multiple nuclear polyadenylation hexamers and putative cytoplasmic polyadenylation elements were found in the 3'' UTRs of cDNAs corresponding to the largest mRNA. In vitro translation experiments show that the cDNAs encode active deaminases and that the entire N-terminus and first dsRBM are dispensable for deaminase activity. Importantly, an analysis of the C-termini of five known dsRNA adenosine deaminases, and two putative deaminases, reveals motifs that are strikingly similar to the conserved motifs of the DNA-(adenine-N6alpha)-aminomethyltransferases and the DNA-(cytosine-5)-methyltransferases.  相似文献   

6.
7.
We undertook the cloning of preproinsulin cDNAs from the South African clawed toad, Xenopus laevis, in order to study the role of insulin during embryogenesis in this species. We found that X. laevis contains two different preproinsulin cDNAs, both of which code for peptides containing 106 amino acids of typical structure but which differ by eight amino acids: one in the signal peptide, two in the B-chain, four in the C-peptide, and one in the A-chain. Southern blot analysis indicates that the two preproinsulin cDNAs identified correspond to two different nonallelic genes which we believe arose through a recent gene duplication within the amphibian radiation possibly during the development of tetraploidy in this species. Both genes are expressed, since we have recently identified the two corresponding insulins in pancreatic extracts of adult toads (Shuldiner, A.R., Bennett, C., Robinson, E.A., and Roth, J. (1989) Endocrinology, in press). These cDNAs represent the first amphibian preproinsulin sequences to be elucidated.  相似文献   

8.
The complete amino acid sequences of two potassium channel proteins from NG108-15 neuroblastoma-glioma hybrid cells have been deduced by cloning and sequencing the cDNAs. One of these proteins (NGK2) is structurally more closely related to the Drosophila Shaw gene product than to the Shaker and Shab gene products, whereas the other (NGK1) is identical with a rat brain potassium channel protein (BK2) which is more closely related to the Drosophila Shaker gene product. mRNAs derived from both the cloned cDNAs, when injected into Xenopus oocytes, direct the formation of functional potassium channels with properties of delayed rectifiers.  相似文献   

9.
All five functional domains of the low density lipoprotein (LDL) receptor were assembled in their modern form more than 350 million years ago, as revealed from the sequence of two cloned cDNAs from the frog Xenopus laevis. The two cDNAs appear to represent duplicated copies of the LDL receptor gene that arose when the entire genome of Xenopus duplicated approximately 30 million years ago. Both frog LDL receptors bound Xenopus LDL with high affinity and human LDL with lower affinity when expressed in monkey COS cells. The receptors also showed high affinity for rabbit beta-migrating very low density lipoprotein and canine apoE-HDLc, both of which contain apolipoprotein E. Each of the seven cysteine-rich repeats in the ligand binding domain of the Xenopus receptors resembles its counterpart in the human, indicating that these repeats had already acquired their independent structures by the time of amphibian development. The cytoplasmic tail of both Xenopus receptors is 86% identical to the human, including the FDNPVY sequence necessary for internalization in coated pits. The attainment of a fully developed receptor structure in Xenopus suggests that earlier forms of the receptor may exist in animals that are older than amphibians. An accompanying paper demonstrates that expression of both Xenopus receptor genes is controlled by a sterol regulatory element that closely resembles the human sequence (Mehta, K.D., Brown, M.S., Bilheimer, D.W., and Goldstein, J.L. (1991) J. Biol. Chem. 266, 10415-10419).  相似文献   

10.
11.
12.
13.
A Xenopus laevis complementary DNA (cDNA) library prepared from messenger RNAs extracted from embryos has been screened for actin-coding sequences. Two cDNA clones corresponding to an alpha cardiac and an alpha skeletal muscle actin mRNA have been identified and characterized. From a genomic library, we have furthermore isolated the genes that correspond to the characterized cDNAs. In addition we have identified an actin processed gene which seems to be derived from a second type of skeletal muscle actin gene. Southern blot analysis of X. laevis DNA reveals that each of the three genes is present in at least two copies. In Xenopus tropicalis, a similar Southern blot analysis demonstrates that the three alpha actin genes exist as single copy. This result correlates with the genome duplication that has been proposed to have occurred recently in a X. laevis ancestor. A sequence comparison of the X. laevis cardiac and skeletal muscle actin cDNAs shows that the encoded peptides are highly conserved. Nevertheless, the numerous nucleotide changes at silent mutation sites suggest that the genes originated before the amphibia/reptile-bird divergence, more than 350 million years ago. Comparison of the promoters of the cardiac and skeletal actin genes, which are co-expressed in embryos, reveals a few common structural sequence elements.  相似文献   

14.
Unlike all other vertebrates examined to date, there is only one detectable class I locus in the Xenopus MHC. On the bases of a nearly ubiquitous and high tissue expression, extensive polymorphism, and MHC linkage, this gene is of the classical or class Ia type. Sequencing analysis of class Ia cDNAs encoded by eight defined MHC haplotypes reveals two very old allelic lineages that perhaps emerged when humans and mice diverged from a common ancestor up to 100 million years ago. The unprecedented age of these lineages suggests that different class Ia genes from ancestors of the laboratory model Xenopus laevis are now expressed as alleles in this species. The lineages are best defined by their cytoplasmic and alpha2 peptide-binding domains, and there are highly diverse alleles (defined by the alpha1 peptide-binding domain) in each lineage. Surprisingly, the alpha3 domains are homogenized in both lineages, suggesting that interallelic gene conversion/recombination maintains the high sequence similarity.  相似文献   

15.
16.
17.
Following previous cloning and expression studies of Xenopus aldolase C (brain-type) and A (muscle-type) cDNAs, we cloned here two Xenopus aldolase B (liver-type) cDNAs (XALDB1 and XALDB2, 2447 and 1490 bp, respectively) using two different liver libraries. These cDNAs had very similar ORF with only one conservative amino acid substitution, but 3'-UTR of XALDB1 contained ca. 1 kb of unrelated reiterated sequence probably ligated during library construction as shown by genomic Southern blot analysis. In adult, aldolase B mRNA (ca. 1.8 kb) was expressed strongly in kidney, liver, stomach, intestine, moderately strongly in skin, and very weakly in all the other tissues including muscles and brain, which strongly express aldolase A and C mRNAs, respectively. In oocytes and early embryos, aldolase A and C mRNAs occurred abundantly as maternal mRNAs, but aldolase B mRNA occurred only at a residual level, and its strong expression started only after the late neurula stage, mainly in liver rudiment, pronephros, epidermis and proctodeum. Thus, active expression of the gene for aldolase B, involved in dietary fructose metabolism, starts only later during development (but before the feeding stage), albeit genes for aldolases A and C, involved in glycolysis, are expressed abundantly from early stages of embryogenesis, during which embryos develop depending on yolk as the only energy source.  相似文献   

18.
19.
The sequencing of expressed sequence tags (ESTs) from Xenopus laevis has lagged behind efforts on many other common experimental organisms and man, partly because of the pseudotetraploid nature of the Xenopus genome. Nonetheless, large collections of Xenopus ESTs would be useful in gene discovery, oligonucleotide-based knockout studies, gene chip analyses of normal and perturbed development, mapping studies in the related diploid frog X. tropicalis, and for other reasons. We have created a normalized library of cDNAs from unfertilized Xenopus eggs. These cells contain all of the information necessary for the first several cell divisions in the early embryo, as well as much of the information needed for embryonic pattern formation and cell fate determination. To date, we have successfully sequenced 13,879 ESTs out of 16,607 attempts (83.6% success rate), with an average sequence read length of 508 bp. Using a fragment assembly program, these ESTs were assembled into 8,985 'contigs' comprised of up to 11 ESTs each. When these contigs were used to search publicly available databases, 46.2% bore no relationship to protein or DNA sequences in the database at the significance level of 1e-6. Examination of a sample of 100 of the assembled contigs revealed that most ( approximately 87%) were comprised of two apparent allelic variants. Expression profiles of 16 of the most prominent contigs showed that 12 exhibited some degree of zygotic expression. These findings have implications for sequence-specific applications for Xenopus ESTs, particularly the use of allele-specific oligonucleotides for knockout studies, differential hybridization techniques such as gene chip analysis, and the establishment of accurate nomenclature and databases for this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号