首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Bellossi 《Biotherapy》1992,4(4):277-283
AKR mice were exposed to a 6 mT, 12 Hz or 460 Hz pulsed magnetic field (PMF) 30 minutes twice a week. The exposure took placein utero and/or during the life span for four consecutive generations. The adult mice exposed to the 460 Hz PMF only after the birth time were lighter than the controls; for the two frequencies the decrease in weight with the ageing was less pronounced than in the controls. When the exposure took placein utero the exposed new-born mice were heavier than the controls. The difference in weight progressively disappeared when the mice were exposed to the 12 Hz PMF, persisted when the mice were exposed to the 460 Hz PMF.  相似文献   

2.
The controversy over whether magnetic fields (MF) produced by electrical wiring and appliances contribute to diseases such as cancer has been debated in the literature for more than 2 decades. These extremely low frequency fields at 50 or 60 Hz are omnipresent in the industrialized world and have been linked to various forms of cancer by epidemiological studies. Little has been published investigating any possible role of MF and cardiovascular disease, and this is the first study looking specifically at the effect of exposure to high-intensity MF on the development and progression of restenosis. A mouse arteriovenous bypass model was used, and mice were exposed to MF for periods of 1, 2, or 3 weeks. Neointima formation, infiltration of mononuclear cells, and heat shock protein 60 expression were all studied at the conclusion of the exposure regimen. Animals exposed to the MF for 1 week showed significantly smaller neointima formation compared with control mice exposed to a null field, although this difference was not observed in mice exposed for 2 or 3 weeks. No difference was found between mice exposed to MF and controls in any of the other parameters investigated.  相似文献   

3.
Two groups of SENCAR mice were treated with a single dose of carcinogen and then, for 23 weeks, with a chemical tumor promoter to induce skin tumors. During this period, one group was coexposed to a 2 mT power frequency (60 Hz) magnetic field, while the other was exposed to sham conditions. Application of the tumor promoter ceased after 23 weeks, but the exposure to sham conditions or magnetic fields continued for an additional 29 weeks. No difference was found between the two groups of mice in terms of the incidence of total tumors (P =.297) or squamous cell carcinomas (SSC) (P =.501). In summary, there was no evidence to support the hypotheses that 60 Hz magnetic fields (MF) can influence the development of either papillomas or SSC under our defined experimental conditions. The overall results add to previous animal studies that find no association between exposure to 60 Hz MF and the incidence of benign or malignant tumors.  相似文献   

4.
To determine the long-term biological effects of protracted alpha irradiation of the lung, 84-day-old C57BL/6J mice were repeatedly exposed by inhalation to aerosols of 239PuO2 every other month for up to six exposures in 10 months to reestablish lung burdens of 20, 90, or 460 Bq. Other mice were exposed only once when either 84 or 460 days of age to achieve desired initial lung burdens of 20, 90, 460, or 2300 Bq. Suitable control groups were maintained. Groups of mice with similar cumulative alpha doses to the lung had 3.4 to 4.4 times greater incidence of pulmonary tumors (adenomas and adenocarcinomas) when the dose to the lung was protracted by the repeated inhalation exposures compared to mice that received a single inhalation exposure. Excess pulmonary tumors per unit dose to the lung were also greater in groups of repeatedly exposed mice compared to those exposed only once. Repeatedly exposed mice also died earlier with pulmonary tumors than did those exposed once. It appears that protraction of an alpha dose to lungs increases the carcinogenic risk of inhaled 239PuO2 in mice.  相似文献   

5.
The purpose of this study was to reproduce and extend two earlier studies of the effects of human exposure to 50 Hz magnetic fields (MF). In a recent paper, we described results of two double-blind investigations performed to examine effects of 100 microT(rms) 50 Hz MF exposure on psychological parameters in the same group of healthy human volunteers. In each exposure session, at 1 week intervals, with sham, continuous, and intermittent (15 s ON/OFF cycles) MF conditions, mood ratings, performance measures, and electrophysiological measures were taken. In the first study, significant amplitude changes were observed in the event-related brain potentials (ERP) recorded during a dichotic listening task. In the second study, latency and reaction time (RT) slowing were seen on a visual discrimination task (P(300) paradigm). Although these results were little related to the number of parameters analysed, they indicate that low level 50 Hz MF might have a slight influence on ERP and RT under specific circumstances of sustained attention. Before concluding that moderately strong MF exposure can influence cognitive function, previous results should be replicated, using the same paradigms with another group of healthy volunteers. In the present study, 18 healthy subjects were exposed to three experimental sessions of 30 min each, given at 1 week intervals. The sessions consisted of continuous 100 microT(rms) 50 Hz MF exposure, sham condition, and bright light (5000 lux) exposure. The study was performed double-blind, with the exposure order counter-balanced. The data on mood, ERP, RT, and other performance measures did not show any differences among the sham exposure, light exposure, and MF exposure conditions. The results of this study do not support the hypothesis that extremely low frequency (ELF) MF exposure affects the brain's electrical activity or cognitive function at field strength (100 microT(rms)) similar to that found in very close proximity of some household and industrial electrical appliances and well in excess of the average MF strength (c. 0.1 microT) found in homes. The sensitivity of the experiment was possibly not sufficient to detect an effect at this relatively low MF, and larger sample sizes would be required in further studies.  相似文献   

6.
OF1 mice were chronically exposed to a 50‐Hz sinusoidal East–West magnetic field 15 µT (rms), in order to evaluate the blood coagulation variations related to the effect of this nonionizing radiation. Mating and pregnancy of ancestors (first generation), and birth, lactation, and development of second‐generation female mice until adulthood took place in the experimental field. A global blood coagulation study of both control and exposed 14‐ to 15‐week‐old and 50‐ to 52‐week‐old, second‐generation females was carried out. Plasma calcium content was determined by atomic absorption spectrophotometry. Different steps of blood coagulation were studied by thromboelastography (TEG) in whole blood (WB), platelet‐rich plasma (PRP), and platelet‐poor plasma (PPP). A significant decrease (approximately 34.5%) of calcium concentration was detected with aging; however, no change was induced by medium‐term or long‐term exposure to extremely low frequency magnetic field (ELF‐MF). Medium‐term exposure could not be related to noticeable changes in global coagulation. However, a great deterioration of fibrin clot formation in mature exposed female mice was detected as a result of the long‐term exposure that was strengthened by aging. These deficiencies seemed to be compensated by the discrete, although statistically not significant, decrease of platelet counts and the significant decrease of blood cells' mean corpuscular volume associated to ELF‐MF exposure of 50‐Hz, 15 µT. Consequently, whole blood TEG values of mature exposed female mice were similar to those from the young control group. In view of the obtained results, further studies on variations associated with ELF‐MF exposure in different coagulation parameters will be necessary.  相似文献   

7.
We recently reported that continuous exposure, for 8 weeks, of extremely low frequency (ELF) magnetic field (MF) of 0.1 or 0.5 mT might induce testicular germ cell apoptosis in BALB/c mice. In that report, the ELF MF exposure did not significantly affect the body weight or testicular weight, but significantly increased the incidence of testicular germ cell death. In the present study, we aimed to further characterize the effect of a 16-week continuous exposure to ELF MF of 14 or 200 microT on testicular germ cell apoptosis in mice. There were no significant effects of MF on body weight and testosterone levels in mice. In TUNEL staining (In situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling), germ cells showed a significantly higher apoptotic rate in exposed mice than in sham controls (P < 0.001). TUNEL-positive cells were mainly spermatogonia. In an electron microscopic study, degenerating spermatogonia showed condensation of nuclear chromatin similar to apoptosis. These results indicate that apoptosis may be induced in spermatogenic cells in mice by continuous exposure to 60 Hz MF of 14 microT.  相似文献   

8.
The results of 3 sets of experiments on the effects of 22 μT sinusoidal 50 Hz magnetic fields (MF), applied for 1 h on 5 successive days (1 h/5 days), on the level of host defense and on spleen colony formation are reported. The first set of experiments shows the effects on the number of colony‐forming units (CFUs) on the spleen and on the cellularity of the thymus in mice. The MF exposures resulted in an increase in CFUs which was statistically significant with respect to the controls, but not with respect to the shams. Statistically significant changes in the thymic weight and thymic index with respect to both the controls and the shams were measured 1 h after the last MF exposure. In the second set of experiments, the mice were given a sublethal dose of X‐rays (6 Gy), which was followed by exposure 2 h later to the MF. The MF exposure was repeated at the same time of day for 5 days. The number of colonies per spleen showed a consistent, statistically significant increase with MF exposure and the number of CFUs per femur was decreased. In the third set of experiments, bone marrow was taken from mice which had been exposed to 22 μT fields and injected into mice which had been exposed to a lethal dose of X‐rays (9 Gy). The number of CFUs per femur in the recipient mice was shown to be reduced by a statistically significant amount at 1 and 4 days after injection. Bioelectromagnetics 20:57–63, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
In previous studies we have demonstrated that 50 Hz, 100 μT magnetic field (MF) exposure of female Sprague-Dawley rats for 13 weeks significantly enhances the development and growth of mammary tumors in a breast cancer model. The present study was designed to test the hypothesis that, at least in part, the tumor (co)promoting effect of MF exposure is due to MF effects on the immune surveillance system, which is of critical importance in protecting an organism against the development and growth of tumors. For this purpose, female Sprague-Dawley rats of the same age as in the mammary tumor experiments were continuously exposed for different periods (2, 4, 8, and 13 weeks) to a 50 Hz, 100 μT MF. Control groups were sham-exposed simultaneously. Following the different exposure periods, splenic lymphocytes were cultured and the proliferative responses to the T-cell-selective mitogen concanavalin A (Con A) and the B-cell-selective pokeweed mitogen (PWM) were determined. Furthermore, the production of interleukin-1 (IL-1) was determined in the splenocyte cultures. The mitogenic responsiveness of T cells was markedly enhanced after 2 weeks of MF exposure, suggesting a co-mitogenic action of MF. A significant, but less marked increase in T-cell mitogenesis was seen after 4 weeks of MF exposure, whereas no difference from sham controls was determined after 8 weeks, indicating adaptation or tolerance to this effect of MF exposure. Following 13 weeks of MF exposure, a significant decrease in the mitogenic responsiveness of lymphocytes to Con A was obtained. This triphasic alteration in T-cell function (i.e., activation, tolerance, and suppression) during prolonged MF exposure resembles alterations observed during chronic administration of mild stressors, substantiating the hypothesis that cells respond to MF in the same way as they do to other environmental stresses. In contrast to T cells, the mitogenic responsiveness of B cells and IL-1 production of PWM-stimulated cells were not altered during MF exposure. The data demonstrate that MF in vivo exposure of female rats induces complex effects on the mitogenic responsiveness of T cells, which may lead to impaired immune surveillance after long-term exposure. Bioelectromagnetics 19:259–270, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
We have previously shown that simultaneous exposure of rat lymphocytes to iron ions and 50Hz magnetic field (MF) caused an increase in the number of cells with DNA strand breaks. Although the mechanism of MF-induced DNA damage is not known, we suppose that it involves free radicals. In the present study, to confirm our hypothesis, we have examined the effect of melatonin, an established free radicals scavenger, on DNA damage in rat peripheral blood lymphocytes exposed in vitro to iron ions and 50Hz MF. The alkaline comet assay was chosen for the assessment of DNA damage. During pre-incubation, part of the cell samples were supplemented with melatonin (0.5 or 1.0mM). The experiments were performed on the cell samples incubated for 3h in Helmholtz coils at 7mT 50Hz MF. During MF exposure, some samples were treated with ferrous chloride (FeCl2, 10microg/ml), while the rest served as controls. A significant increase in the number of cells with DNA damage was found only after simultaneous exposure of lymphocytes to FeCl2 and 7mT 50Hz MF, compared to the control samples or those incubated with FeCl2 alone. However, when the cells were treated with melatonin and then exposed to iron ions and 50Hz MF, the number of damaged cells was significantly reduced, and the effect depended on the concentration of melatonin. The reduction reached about 50% at 0.5mM and about 100% at 1.0mM. Our results indicate that melatonin provides protection against DNA damage in rat lymphocytes exposed in vitro to iron ions and 50Hz MF (7mT). Therefore, it can be suggested that free radicals may be involved in 50Hz magnetic field and iron ions-induced DNA damage in rat blood lymphocytes. The future experimental studies, in vitro and in vivo, should provide an answer to the question concerning the role of melatonin in the free radical processes in the power frequency magnetic field.  相似文献   

11.
In previous studies it has been shown that exposure of mice to a 12-Hz 6 mT unipolar square pulsed magnetic field (PMF) suppressed the excess of weight due to application of 1st cold-pressure sunflower oil. This time we considered the effect of oil and/or PMF on the growing curves lifespans of mice. The exposure took place for 30 min 5 days a week, from the 7th week of life to death. The results are 1) a broken slope in the growing curves from the 125th day of aging: the exposed mice were lighter than the controls, keeping the differences between the growing curves needed a repeated exposure all life long; 2) a significant increase in the lifespan of the controls which received oil versus the controls which received water; 3) an increase in the lifespan of the exposed mice versus the non-exposed control batches. On one hand it has been reported that essential polyunsaturated fatty acids found in first cold-pressure sunflower oil played a prominent role in membrane structures and in immune equilibrium. On the other hand, it was shown that oscillating electric fields could activate Na+K+-ATPase.  相似文献   

12.
We investigated the comparative effects of 4 and 60 Hz magnetic fields on pentylenetetrazole (PTZ)-induced seizure in mice. For this study, we measured the latent time to seizure, seizure duration, and lethality induced by PTZ in mice exposed to 4 and 60 Hz magnetic fields (MF) for 30 min. Compared to sham-exposed controls, the latent time to tail twitching and seizure in the 4 Hz MF group was significantly decreased while the latent time to seizure in the 60 Hz MF group was significantly increased. The seizure duration in the 4 Hz MF group was significantly decreased while that in the 60 Hz MF group was significantly increased. More importantly, while the mice exposed to a 60 Hz MF experienced significantly increased lethality after seizure convulsion, those exposed to a 4 Hz MF showed no lethality, with a shortening of the duration of seizure. This beneficial effect of a 4 Hz MF on seizure has the same implication as the anti-oxidative effects of a 4 Hz MF observed in our previous work. The results of our current and previous works indicate that a 4 Hz MF may be used as a therapeutic physical agent for the treatment of oxidative stress-induced diseases, including seizure, with or without chemical drugs.  相似文献   

13.
We investigated the premorbid behavioral changes produced by the administration of cocaine and acute exposure to extremely low frequency (ELF) magnetic field (MF) in the mouse. ICR mice received intraperitoneal injections of cocaine at two doses (65 and 70 mg/kg) and were subsequently exposed to one of eight ELF-MF fields (2, 3, 4, 8, 10, 15, 25, or 60 Hz) of about 20 G (2 mT) intensity immediately after injection. Twelve mice were used for each of applied cocaine dose and ELF-MF level. For a given dose of cocaine, the applied MF frequencies were randomly ordered, and blind tests were carried out in which the behavior observer did not know the frequencies of MF. The premorbid behaviors were defined in the ICR mice and their changes were observed over the exposure of various ELF-MFs. Our data show that the onset times of stop rearing and tonic-clonic seizure in the 4 Hz MF exposure group are significantly different from those of the sham group.  相似文献   

14.
Wen J  Jiang S  Chen B 《Bioelectromagnetics》2011,32(4):322-324
Our previous cellular experiments demonstrated that 100 Hz magnetic field (MF) was effective at enhancing apoptosis of liver cancer cells BEL‐7402 induced by X‐ray irradiation. This study was performed to further explore the possible synergism between 100 Hz MF and X‐ray in treatment of hepatoma‐implanted Balb/c mice. 100 Hz MF exposure with a mean flux density of 0.7 mT was performed inside an energized solenoid coil. Six MV X‐ray irradiation was generated using a linear accelerator. Tumor growth and survival of mice implanted with H22 cells were evaluated by measuring the tumor diameters and overall days of survival. Six groups treated with 100 Hz MF or X‐ray alone or a combination of MF and X‐ray were examined. Furthermore, the effects of different numbers of MF exposure periods on tumor growth and mice survival were examined when combined with 4 Gy X‐ray. Data referring to overall survival days and tumor diameters of the above groups were compared using log‐rank test and Student's t‐test. Our results showed that five periods of combined 100 Hz MFs and 4 Gy X‐ray could significantly extend the overall days of survival and reduce the tumor size compared to MF or X‐ray alone. Also, a greater number of 100 Hz MF exposure periods could further improve the survival and inhibit tumor growth in hepatoma‐implanted mice when combined with 4 Gy X‐ray. In conclusion, these findings suggested that 100 Hz MF could possibly synergize with 4 Gy X‐ray in terms of survival improvement and tumor inhibition in hepatoma‐implanted mice. Bioelectromagnetics 32:322–324, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
In a series of experiments with the chemical carcinogen DMBA (7, 12-dimethyl[a]anthracene), we recently found that exposure of female Sprague-Dawley rats in 50 Hz magnetic fields (MF) in the microtesla range significantly facilitates the development and growth of mammary tumors. One possible explanation for this finding would be enhanced proliferation of breast epithelial stem cells by MF exposure, thereby increasing the sensitivity of these cells to chemical carcinogens. In line with this possibility, we previously determined that 50 Hz, 50 microT MF exposure induces increases in ornithine decarboxylase (ODC), i.e., a key enzyme in cell proliferation, in the mammary gland of female Sprague-Dawley rats. In the present study, we examined the time course of this effect, by using different periods of exposure to a 50 Hz, 100 microT MF. Furthermore, we determined ODC in different mammary complexes of the rat mammary gland to evaluate whether differences in response to MF exist over the anterior-posterior extension of this organ. Exposure of young female Sprague-Dawley rats induced marked increases in ODC in the mammary gland that were similar to ODC increases seen in "positive control" experiments with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). However, this effect of MF critically depended on the duration of MF exposure, with no effect, or at least no consistent effect, for short (<1 week) or long (8 weeks and above) exposure periods, but a robust and reproducible enhancing effect on ODC activity after 2 weeks of exposure. Furthermore, we found that the effect of MF exposure depends on the part of the mammary complexes examined, the cranial thoracic (or cervical) complexes being particularly sensitive to ODC alterations in response to MF. This is in line with recent DMBA experiments of our group in which MF-induced increases in tumor development and growth were predominantly seen in this large cranial/cervical part of the mammary gland. The most likely explanation for the observed ODC changes after MF exposure is the "melatonin hypothesis," although other cellular and molecular effects of MF might be involved as well.  相似文献   

16.
Our recent results suggest that 50 Hz magnetic fields (MF) enhance ultraviolet (UV)-induced tumorigenesis in mouse skin. The aim of the present experiment was to study suppression of apoptosis as a possible mechanism for MF effects on skin tumorigenesis. Another aim was to test the importance of a UV and MF exposure schedule, particularly the role of MF exposure prior to UV irradiation. Female mice were exposed to a UV dose of 2 human MED and to 100 microT MF of 50 Hz, using the following exposure schedules: group 1 sham MF 24 h, UV 1 h, sham MF 24 h; group 2 sham MF 24 h, UV 1 h, MF 24 h; group 3 MF 24 h, UV 1 h, MF 24 h. Lamps emitting simulated solar radiation (SSR) were used for UV irradiation. Skin samples were analysed for apoptosis, expression of the p53 gene, activity of the enzyme ornithine decarboxylase (ODC) and polyamine concentrations. A significantly (p = 0.017) lower number of apoptotic cells was measured in group 2 compared to group 1. A similar but not statistically significant (p = 0.064) decrease was also detected in group 3. No p53 expression was detected in any sample. The levels of ODC and putrescine did not differ significantly between the UV-only and UV and MF-exposed groups. Spermidine and spermine levels were significantly (p = 0.014 and 0.014, respectively) lower in group 3 than in group 1, but no decrease was observed in group 2. Our findings suggest that SSR induces p53-independent apoptosis in mouse skin and that the apoptotic response may be inhibited by exposure to MF. The exposure schedule did not alter the MF effect. The results do not support a causal role for polyamines in MF effects on apoptosis.  相似文献   

17.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

18.
Hybrid male mice were exposed to 2.45 GHz microwaves for 30 min/day, 6 days a week for two consecutive weeks at power densities of 1.0, 100 or 400 W m-2, with sham-exposed controls. Rectal temperatures before and after exposure were measured on days 1, 6 and 12. Measurements made on day 1 were treated with caution because of heterogeneity in rectal temperatures taken before exposure between the groups of mice given different treatments. On days 6 and 12, rectal temperatures rose by approximately 1 degree C in mice sham exposed, or exposed to 1 W m-2 or 100 W m-2. Only in the group of mice exposed to 400 W m-2 was the mean rise in rectal temperature during exposure (about 3 degrees C) significantly increased above the sham value. In groups killed 2-3 days after treatment (mainly meiotic exposure) frequencies of chromosome aberrations in spermatocytes showed no significant heterogeneity although the highest frequency of 1.5 per cent was at the highest (400 W m-2) power density. Another group killed 30 days after 100 W m-2 exposures (spermatogonial sampling) showed no significant increase over controls in chromosome aberration frequency. There was a small but significant increase in sperm count with increasing power density in mice killed 12-13 days after exposure, but a non-significant one in those exposed as spermatogonia (killed 41 days later). Thus effects were markedly less severe than those reported previously by Manikowska-Czerska et al. (1985) with a very similar radiation regime and were probably caused by the temperature enhancement.  相似文献   

19.
Four-day-old chicken embryos were exposed to extremely low frequency (ELF) magnetic fields (MF) prior to UV exposure (75 min, predominantly UV-C, 0.4 mW/cm2) to investigate possible MF-mediated protection against lethal effects of UV. The UV exposure typically resulted in a 20% survival rate (as judged by beating hearts) in sham-exposed embryos 3 h postexposure. In contrast, exposure to a 50 (10, 50, or 100 µT) or 60 Hz (10 µT) vertical MF caused a significant increase in survival rate, observed only 30 min after UV exposure. No difference in protection levels was seen between these exposure intensities. A horizontal 50 Hz MF (10, 50, or 100 µT) did not result in the general protection against UV-induced death observed for vertical fields, suggesting that the size of the induced electric field (which differs between horizontal and vertical exposure) is important for the MF-induced protection. To explore the molecular mechanisms involved in this effect, immunoblotting experiments with an antibody against the inducible form of hsp70 were performed. These showed that application of MF (50 Hz, 200 µT, 1 h) induced hsp70 expression in human K562 cells.  相似文献   

20.
The main goal of this study was to evaluate the possible effect of whole-body magnetic field (MF) exposure on the steroidogenic capacity of Leydig cells in vitro. In four separate experiments, male CFLP mice were exposed to sinusoidal 50-Hz, 100-microT MF. The duration of exposure was 23.5 h/day over a period of 14 days. At the end of the exposure, interstitial (Leydig) cells were isolated from the testicles of the sham-exposed and exposed animals. The cells were cultured for 48 h in the presence or absence of 1, 10, or 100 mIU/ml human chorionic gonadotropin (hCG). The luteinizing hormone (LH) analog hCG was used to check the testosterone (T) response of the sham-exposed controls and to evaluate the possible effect of the whole-body MF exposure on the steroidogenic capacity of Leydig cells in vitro. Testosterone content of the culture media and blood sera was measured by radioimmunoassay (RIA). In the cultures obtained from MF-exposed animals, the hCG-stimulated T response was significantly higher (p < 0.01) compared with the sham-exposed controls, while the basal T production of cells and the level of serum T remained unaltered. No MF exposure-related histopathological alterations were found in testicles, epididymes, adrenals, prostates, and pituitary glands. The MF exposure did not affect the animal growth rate and the observed hematologic and serum chemical variables. Our results indicate a presumably direct effect of whole-body MF exposure on the hCG-stimulated steroidogenic response of mouse Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号