首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
以488份苹果种质资源为试材,利用嫩叶和嫩枝离体接种方法鉴定评价苹果属栽培品种、野生种和古老栽培品种的火疫病抗性。结果表明,嫩叶和嫩枝接种结果存在较大差异,嫩枝接种的抗性资源明显多于嫩叶接种。不同种、不同来源、不同系谱的苹果资源火疫病抗性均存在较大差异。嫩叶接种显示苹果栽培品种和野生种的抗病资源比例均高于古老栽培品种;旭系和金冠系抗性资源比例较高;不同来源的189份塞威士苹果评价结果显示,高抗资源主要来自乌兹别克斯坦和中国新疆新源。嫩枝接种显示栽培品种的抗性表现与嫩叶接种相似;塞威士苹果则存在差异,来自乌兹别克斯坦和中国新疆巩留的抗性类型比例较高。嫩叶和嫩枝接种结果一致的187份资源分析,发现苹果栽培品种抗性资源比例较高;旭系品种的抗性较强;抗病的塞威士苹果主要来自乌兹别克斯坦和中国新疆新源。筛选高抗资源8份,苹果栽培品种6份和塞威士苹果2份。6份苹果栽培品种可作为鲜食种质创制和品种选育亲本,2份塞威士苹果既可作为鲜食也可用作砧木品种选育的基础材料。  相似文献   

2.
2016-2017年,在人工接种条件下对110份高粱种质资源进行了抗黑束病鉴定与评价研究,拟探明高粱抗病性及不同寄主来源的高粱、玉米黑束病菌致病力差异。110份高粱种质资源中,对高粱来源的黑束病菌(GHS-1)表现免疫(IM)的13份(占11.8%),高抗(HR)的17份(占15.5%),抗病(R)和中抗(MR)的各14份(占25.4%);感病(S)的17份(占15.5%),高感(HS)的35份(占31.8%);对玉米来源的黑束病菌(YHS-1)表现免疫(IM)的21份(占19.1%),高抗(HR)的11份(占10.0%),抗病(R)的15份(占13.6%),中抗(MR)的12份(占10.9%);感病(S)的21份(占19.1%),高感(HS)的30份(占27.3%)。上述结果表明,目前高粱育种中广泛应用的育种种质恢复系中抗黑束病材料较为丰富,且不同寄主来源的高粱和玉米黑束病菌致病力存在差异。  相似文献   

3.
苹果炭疽叶枯病病原学研究   总被引:6,自引:1,他引:5  
炭疽叶枯病菌能够侵染苹果叶片造成病叶早期干枯、脱落,侵染果实引起坏死性斑点。该病害近年来在我国一些苹果产区被发现,并有迅速蔓延的趋势。对采自河南和陕西的苹果炭疽叶枯病的病原菌进行了形态学、培养特性、致病性及分子系统发育研究,明确了引起该病害的病原为果生刺盘孢Colletotrichum fructicola和隐秘刺盘孢C.aenigma。经致病性测定,证明C.fructicola和C.aenigma对嘎拉、秦冠、金冠、粉红女士、太平洋玫瑰、金世纪、蜜脆等以金冠为亲本的品种叶片致病;在有伤接种时,C.fructicola和C.aenigma对嘎拉、金冠、秦冠、太平洋玫瑰、新红星、富士等品种果实具有致病性;在无伤接种时,C.fructicola对嘎拉、金冠果实致病,C.aenigma对嘎拉果实致病。研究结果表明,C.fructicola和C.aenigma对不同品种叶片和果实的致病性都存在明显的分化现象。  相似文献   

4.
为解析苹果对炭疽叶枯病的抗性机制,该研究以‘嘎拉’、‘藤牧1号’苹果及其杂交后代等87个苹果品种(系)为试验材料,进行田间调查及人工接种病菌并检测不同品种(系)中病菌生物量,利用SSR分子标记进行基因型鉴定,分析各品种(系)对炭疽叶枯病的抗性差异,利用荧光定量PCR及酶活检测比较分析水杨酸相关基因、抗性酶基因及酶活性水平差异。结果表明:(1)87个苹果品种(系)对苹果炭疽叶枯病的抗性差异明显,‘嘎拉’、‘2 5’、‘19 19’等品种(系)叶片发病严重,表现出对炭疽叶枯病的高感性,‘藤牧1号’、‘40 9’及‘16 16’等品种(系)叶片无病斑或病斑极少,炭疽叶枯病菌含量显著低于感病性品种(系),其抗性显著。(2)SSR标记S0405127和S0304673的基因型鉴定结果与田间表型调查结果相比,准确率分别为93.10%和91.95%,与人工接种结果相比,准确率分别为91.95%和95.40%。(3)SA相关基因的表达模式结果表明,接种炭疽叶枯病菌4 d后,‘藤牧1号’、‘40 9’及‘16 16’等抗性品种(系)中SA合成相关基因MdEDS1、MdPAD4和MdPAL被强烈诱导表达;同时,SA信号转导相关基因MdNPR1、MdPR1、MdPR5的表达显著高于‘嘎拉’等感病品种(系)。(4)接种炭疽叶枯病菌4 d后,‘藤牧1号’、‘40 9’及‘16 16’等抗性品种(系)的MdSODMdPOD酶基因表达水平及酶活性显著高于‘嘎拉’、‘2 5’、‘19 19’等感病品种(系)。研究认为,‘藤牧1号’、‘40 9’及‘16 16’等品种(系)通过调控水杨酸合成和信号转导通路及氧化还原相关反应等提高对炭疽叶枯病的抗性,为挖掘抗性基因以及利用优良种质选育抗病品种奠定了基础。  相似文献   

5.
南方锈病是玉米生产上的重要病害。2013-2015年在广西南宁和北京昌平对903份玉米种质资源进行了抗南方锈病的初步鉴定与评价,并利用SSR标记对筛选出的部分抗性材料进行了遗传多样性分析。结果表明,在903份种质中,8份自交系在广西南宁和北京昌平均对南方锈病表现高抗(HR),占总鉴定种质的0.9%;29份材料表现为抗病(R),占比3.2%,包括27份自交系和2份农家种;中抗种质(MR)100份,占比11.1%;感病(S)和高感(HS)种质分别为181和585份,占鉴定材料的20.0%和64.8%。由此可见,玉米资源中高抗南方锈病的种质较为匮乏,在不同地点均表现高抗的材料是难得的抗源。不同地理来源的玉米种质对南方锈病的抗性水平存在较大差异,其中抗性资源较为丰富的是源自内蒙古和山西的种质。42对多态性SSR引物在50份抗锈病材料中,共扩增出141个条带,多态性条带139个,多态位点百分率(PPB)为98.58%。平均等位基因数(Na)1.98,平均有效等位基因数(Ne)1.59,平均Nei's基因多样性(H)0.34,平均多态性信息含量(PIC)0.78,平均Shannon's信息指数(I)0.51;通过UPGMA聚类分析,50份抗病材料被划分为2个类群,其中,第Ⅰ类群又可划分为5个亚类,表现出较高的遗传多样性,为抗病育种中抗源的选择和利用提供参考信息。  相似文献   

6.
由Xanthomonas oryzae pv.oryzae(Xoo)引起的白叶枯病是水稻生产中普遍发生、危害严重的一种细菌病害。本研究采用我国和菲律宾的6个Xoo代表菌株,人工接种评价了来源于我国26个省份的174份水稻微核心种质资源对白叶枯病的抗性。结果表明,来源于不同稻作区的种质资源以及籼粳亚种对白叶枯病的抗性存在明显分化,6个粳稻品种和7个籼稻品种对2个或2个以上的菌株具有抗性,其中7-304、山酒谷、麻谷子、包二幅以及古154抗谱较广。本文的研究结果将为水稻抗白叶枯病育种提供有用的信息。  相似文献   

7.
玉米种质资源抗南方锈病鉴定   总被引:4,自引:1,他引:3  
玉米南方锈病已成为近几年我国夏玉米生产区间歇性暴发流行的病害,对玉米生产构成严重威胁,病害流行年份可造成10%以上的产量损失。目前,已确认的抗病自交系非常有限,而抗病育种急需不同抗性控制背景的自交系。为发掘和丰富可利用的南方锈病抗源,于2008~2012年,在广西南宁采用田间人工接种方法对1589份玉米种质资源进行抗南方锈病鉴定。通过高病害压力和连续多年的鉴定,从1589份玉米种质中鉴定出高抗(HR)材料26份,占鉴定总数的1.64%;抗病(R)材料137份,占鉴定总数的8.62%;中抗(MR)水平的材料382份,占鉴定总数的24.04%;感病(S)材料489份,占鉴定总数的30.77%;高感(HS)材料555份,占鉴定总数的34.93%。总体上抗南方锈病种质较少,引进种质中抗病类型材料的比例略高。经重复鉴定,筛选出赤556等18份自交系、老来秕等3份地方品种、A69等4份来自津巴布韦的材料、引自CIMMYT的Dr11表现稳定高抗南方锈病,为今后我国玉米抗南方锈病育种提供了新的抗性资源。  相似文献   

8.
我国苹果属资源现代分布调查初报   总被引:2,自引:0,他引:2  
种质资源是农业生物资源的重要组成部分。我国是苹果属植物的起源演化中心之一,加强我国苹果种质资源调查与收集,可以丰富我国苹果资源保存的多样性。国家果树种质苹果圃于2005-2016年开展了我国西北、华北、西南、东北和华东苹果属植物集中分布地区的调查和收集,旨在进一步摸清家底,扩展我国苹果属种质资源的保存类型和数量,为保护利用及科学研究提供基础资料。调查结果表明:我国苹果属种质资源类型多样,分布广泛,新收集资源621份,西北、西南和东北地区的苹果野生种资源丰富,地方品种少量分布;华北地区以地方品种为主,野生种类型较少。目前野生资源集中分布面积逐年减少,由先前的大范围散落分布逐渐转变为小面积集中分布;地方品种面临的问题较多,砍伐频发,流失严重。以连续11年的苹果属种质资源调查为依据,提出苹果资源收集保存面临的问题,并提出建议。  相似文献   

9.
采用人工接种黑星病菌的方法,对国家果树种质兴城梨资源圃保存的197份梨种质资源进行了抗病性鉴定,结果表明:不同梨种类发病率差异很大,其中白梨和砂梨最易感病,秋子梨和种间杂交选育品种较易感病,新疆梨较抗病,西洋梨最抗病;对病情指数在各梨种类分布进行了分析;在白梨、砂梨、秋子等各系统分别筛选出黄鸡腿、甩梨、酸梨、锦香等一批抗病资源;对田间自然感病与人工接种感病结果进行了比较。  相似文献   

10.
小麦种质对茎基腐病抗性评价及优异种质筛选   总被引:1,自引:0,他引:1  
小麦茎基腐病是由镰孢菌侵染引起的一种世界性土传病害,近年来已严重威胁到我国小麦的安全生产。为筛选具有茎基腐病抗性的小麦种质资源,本研究采用孢子悬浮液浸种法,分别以国外抗病材料Sunco和中国品种陕253为抗病和感病对照,对670份我国小麦品种(系)进行了茎基腐病温室苗期抗性鉴定。结果发现,我国供试品种(系)感病材料(病情指数>30)所占比例达到84%,且包含多个近年来小麦生产中的主推品种,表明我国小麦品种总体抗性水平低是导致茎基腐病近年来发病频率与程度不断增加的重要原因之一。经多轮筛选,发掘获得15份抗病表现稳定、抗性水平与抗病对照Sunco相仿的材料。15份材料平均病情指数在10.9~19.4之间,其株高、抽穗期等农艺性状表现出较为丰富的变异,为我国小麦抗茎基腐病品种选育和抗性遗传研究提供了种质资源。  相似文献   

11.
Urdbean (Vigna mungo) is an important pulse crop grown worldwide. Urdbean leaf crinkle virus (ULCV) is a pathogen of urdbean found in Pakistan that causes huge losses in yield. Forty urdbean varieties/lines were screened against the virus under field conditions during spring season 2009. None of the lines appeared to be highly resistant or resistant. On the basis of a 0-5 disease rating scale and disease severity index, genotypes varied significantly in their reaction to ULCV. Four lines (M-6206, IAM-382-15, IAM-133, and Mash-1) were moderately resistant, eight were rated as moderately susceptible, and 21 as susceptible; the remaining seven lines were highly susceptible. RAPD analyses revealed an extensive amount of variation, which could be used for cultivar identification. Genetic differentiation among urdbean genotypes was similar to the field screening data. The varieties 6065-3 and 6206 were highly susceptible and moderately resistant, respectively, to ULCV under field conditions, confirmed by the RAPD analysis. These varieties were the most diverse varieties in the similarity matrix (67.2%), while the varieties IAM-382-9 and 07M003 were the most similar (98.4%). This information will help in the recognition of available resistant germplasms that can resist this disease and will be utilized for urdbean improvement in Pakistan.  相似文献   

12.
18份广东香蕉种质对枯萎病的抗性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
【背景】香蕉枯萎病是世界性的香蕉毁灭性病害,尚无有效药剂防控,筛选抗病品种是目前理想的防治方法。【方法】采用组培苗伤根接种法,研究了18份香蕉种质对香蕉枯萎病菌4号生理小种的抗性水平,并根据病情指数进行抗性分级。【结果】在供试的18份香蕉种质中,2份(东莞大蕉、抗枯5号)高抗,2份(碧盛、大丰)抗病,3份(抗枯1号、粉杂、农科1号)中抗,7份(粤优抗1号、广东-741、泰国B9、大蕉、台湾8号、海贡蕉、威廉斯8818)感病,4份(巴西、广东2号、广粉1号、粉蕉)高感。【结论与意义】不同香蕉种质对香蕉枯萎病菌4号生理小种的抗病性存在较大差异,本研究初步筛选出7份抗枯萎病的香蕉种质,为香蕉枯萎病抗病育种提供了依据,为病区种植香蕉品种提供了有效参考。  相似文献   

13.
During fruit development, the concentration of main polyphenols (flavonols, flavanols, dihydrochalcones, hydroxycinnamic acids, anthocyanins) and the activities of related enzymes (phenylalanine ammonia lyase, chalcone synthase/chalcone isomerase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, flavonol synthase, peroxidase) were monitored in apple (Malus domestica Borkh.). The seasonal survey was performed at five different sampling dates and included the healthy peel of the resistant cultivar ‘Florina’ and healthy peel, scab symptomatic spot and the tissue around the infected spot of the susceptible cultivar ‘Golden Delicious’. From all enzymes tested, chalcone synthase/chalcone isomerase had the highest activity in both cultivars, while phenylalanine ammonia lyase had the lowest. The healthy peels of the susceptible and the resistant cultivar did not show differences in the accumulation of the main polyphenol groups present in the apple skin. However, in the resistant cultivar ‘Florina’, an increase of polyphenol enzyme activities could be observed in late stages of fruit development, which seems to be related to the anthocyanin accumulation in ripe fruits. Significant differences in the polyphenol metabolism were observed in the three different tissues of the susceptible cultivar ‘Golden Delicious’. Increased concentrations of hydroxycinnamic acids, dihydrochalcones and flavan-3-ols were found in the scab symptomatic spots and surrounding tissues. Phenylalanine ammonia-lyase, dihydroflavonol 4-reductase, flavanone 3-hydroxylase and peroxidase showed higher activities in the scab symptomatic spot compared to other analysed tissues, whereas the activities of other enzymes remained unchanged. Highest induction of polyphenol accumulation after scab infection was observed in early developmental stages, whereas enzyme activities were increased in later stages.  相似文献   

14.
The use of crop varieties resistant or tolerant to insect pests or other stress factors is one approach in non‐chemical crop‐protection. Knowledge of the biochemical and molecular background of insect–plant interactions is a prerequisite for optimizing breeding for resistance. However, the resistance genes involved in plant–aphid interactions have so far only been identified and characterized in very few plant species. Our work aims to elucidate the molecular and biochemical mechanisms involved in resistance of apple trees, Malus domestica L. (Rosaceae), against its primary aphid pest, the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera: Aphididae), which is considered a serious economic pest of apple. Gene expression in both resistant and susceptible apple cultivars after infestation with rosy apple aphids was investigated by employing the cDNA‐AFLP method (cDNA–Amplified Fragment Length Polymorphism). From approximately 12 500 cDNA fragments detected on polyacrylamide gels, 21 bands were apparently up‐ or down‐regulated only in the resistant cultivar ‘Florina’ after aphid infestation compared to the susceptible cultivar ‘Topaz’ and/or mechanically wounded or non‐infested leaves. These fragments were cloned, sequenced, and the pattern of gene expression for six fragments was subsequently verified by virtual Northern blots. Sequence comparisons of these fragments to GenBank accessions revealed homologies to already known genes, most of them isolated from Arabidopsis thaliana L. Among them, a putative RNase‐L‐inhibitor‐like protein, a pectinacetylesterase, an inositol‐phosphatase‐like protein, a precursor of the large chain of the ribulose‐1,5‐biphosphate‐carboxylase, and defence‐related genes such as a vacuolar H(+)‐ATPase subunit‐like protein and an ADP‐ribosylating enzyme were identified. The results are discussed in relation to a putative role of these genes in conferring aphid resistance in apple trees.  相似文献   

15.
16.
The effect of long-term N-supply on growth, scab resistance and phenolic compounds in the leaves of two apple cultivars was studied. The different pools of phenylpropanoids (hydroxycinnamic acids, dihydrochalcones) and flavonoids (flavonols, catechins, procyanidins) were quanitfied by HPLC from non-infected and inoculated leaves representing different ontogenetic stages. Scab incidence was also evaluated. Strictly following the carbon-nutrient-balance hypothesis, apple trees responded to high N-supply with increased shoot growth and with a reduced accumulation of total phenolic compounds in their leaves. This was shown for the cultivar 'Golden Delicious', which is susceptible to the scab disease caused by Venturia inaequalis , and for the resistant cultivar 'Rewena'. Whereas high N-fertilization increased the susceptibility of 'Golden Delicious', it did not decrease the resistance of 'Rewena' despite of the pronounced reduction of phenolic concentrations. Thus, a simple C trade off between growth-related metabolism and secondary metabolism cannot solely explain changes in defensive potential.  相似文献   

17.
Scab, caused by the fungal pathogen Venturia inaequalis, is the most common disease of cultivated apple (Malus xdomestica). The fungal races 6 and 7 have now overcome the major resistance gene Vf, which is widely used in apple breeding programmes. New breeding strategies to achieve durable resistance are thus necessary. The aim of this study was to determine the genetic basis of quantitative resistance of the apple cultivar 'Dülmener Rosenapfel', known to be scab resistant under different environmental conditions. An F1 progeny derived from the cross between the susceptible cultivar 'Gala' and 'Dülmener Rosenapfel' was tested in a greenhouse with a multi-isolate inoculum of V. inaequalis. Rvi14, a new major gene that conditions a chlorotic-type reaction, was mapped on linkage group (LG) 6 in a genomic region not known to be involved in disease resistance. A further three quantitative trait loci (QTL) for resistance were identified. One co-localized with Rvi14 on LG6, whereas the remaining two were detected on LG11 and LG17, in genomic regions already reported to carry broad-spectrum QTL in other genetic backgrounds. Since a selective genotyping approach was used to detect QTL, an expectation-maximization (EM) computation was used to estimate the corrected QTL contributions to phenotypic variation and was validated by entire progeny genotyping.  相似文献   

18.
One-to three-year-old trees of the apple variety Cox's Orange Pippin were highly resistant to infection by Phytophthora cactorum except during the spring from March to May. A rapid increase in resistance occurred after this time from the commencement of shoot growth. The period of susceptibility to infection by P. syringae was from October to December, when trees were dormant. Inoculations with either fungus during the respective susceptible periods caused rapidly extending lesions which girdled and killed the trees; established lesions continued to enlarge in months when trees were resistant to infection. Similar seasonal fluctuations in resistance to infection by P. cactorum also occurred in mature (35-year-old) Cox trees but the susceptible period was longer. Lesions resulting from inoculations at the optimum time (the ‘mouseear’ to ‘pink-bud’ stages of development) extended at similar rates in both young and old trees. The infrequent incidence of collar rot in young trees is probably related to factors other than inherent resistance. In resistance and pathogenicity studies young trees gave reliable and consistent results, provided that inoculations were correctly timed in relation to bud development.  相似文献   

19.
Alternaria blotch, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of serious pathogen of apples. In order to better understand the molecular mechanisms that underlie the defense responses of apple resistance to Alternaria blotch disease, a comparative proteomic approach was applied to analyze of susceptible and resistant apple cultivars response to A. alternata AP infection using iTRAQ (isobaric tags for relative and absolute quantitation) technique. A total of 4225 proteins were identified, and 1226 proteins were quantified. Of the quantified proteins, 280 and 34 expressed differentially (fold change >1.5) at 72 h post-infection (HPI) in the susceptible (“Starking Delicious”) and the resistant (“Jonathan”) apple cultivars, respectively, compared with mock-inoculated controls. Most of the differentially expressed proteins (DEPs) were associated with host plant resistance to pathogens, including signal transduction, stress and defense, and photosynthesis metabolism. Among these proteins, beta-1,3-glucanase(PR2), thaumatin-like protein (PR5), and lipoxygenase were found in both susceptible and resistant hosts. However, endochitinase and (+)-neomenthol dehydrogenase were only detected in the resistant cultivar and increased in abundance in response to the pathogen attack. To study the role of pathogenesis-related (PR) proteins in the early infection process, their expressions at 6, 18, 36, and 72 HPI were analyzed by western blot. It showed that PR5 were accumulated to a high level at 6 HPI in “Jonathan,” while cannot be detected in “Starking Delicious” until 18 HPI. The above results suggested that endochitinase and (+)-neomenthol dehydrogenase, as well as PR5 which exerts function at early stage, play important roles in apple plant against A. alternata AP infestation.  相似文献   

20.
对42个苹果栽培品种叶片褐斑病进行了田间发病状况调查与抗性鉴定,分析了叶片气孔密度和大小与抗病性之间的关系,同时研究了不同抗性品种离体叶片接种病原菌后超氧化物歧化酶(SOD)、多酚氧化酶(vPo)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)活性和木质素含量的差异变化。依照抗性分级标准,供试材料中抗病品种有14个(其中高抗品种2个),感病品种有28个(其中高感品种7个);叶片气孔密度与病情指数之间存在显著正相关,相关系数r=0.683;叶片接种后,诱导了4种酶活性和木质素含量的升高,抗病和感病品种的SOD和PP0活性无显著差异,而抗病品种的POD和PAL活性以及木质素含量显著高于感病品种。苹果叶片的气孔密度、POD和PAL的活性以及木质素含量与褐斑病抗性有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号