首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of antibiotic and antimicrobial resistance in Gram-negative bacteria is incremental and linked to genetic elements that function in a so-called 'one-ended transposition' manner, including ISEcp1, ISCR elements and Tn3-like transposons. The power of these elements lies in their inability to consistently recognize one of their own terminal sequences, while recognizing more genetically distant surrogate sequences. This has the effect of mobilizing the DNA sequence found adjacent to their initial location. In general, resistance in Gram-negatives is closely linked to a few one-off events. These include the capture of the class 1 integron by a Tn5090-like transposon; the formation of the 3' conserved segment (3'-CS); and the fusion of the ISCR1 element to the 3'-CS. The structures formed by these rare events have been massively amplified and disseminated in Gram-negative bacteria, but hitherto, are rarely found in Gram-positives. Such events dominate current resistance gene acquisition and are instrumental in the construction of large resistance gene islands on chromosomes and plasmids. Similar combinatorial events appear to have occurred between conjugative plasmids and phages constructing hybrid elements called integrative and conjugative elements or conjugative transposons. These elements are beginning to be closely linked to some of the more powerful resistance mechanisms such as the extended spectrum β-lactamases, metallo- and AmpC type β-lactamases. Antibiotic resistance in Gram-negative bacteria is dominated by unusual combinatorial mistakes of Insertion sequences and gene fusions which have been selected and amplified by antibiotic pressure enabling the formation of extended resistance islands.  相似文献   

2.
插入序列共同区元件:细菌中新出现的一种基因捕获系统   总被引:1,自引:0,他引:1  
摘要:插入序列共同区(Insertion sequence common region,ISCR)元件是一类在结构和功能上与IS91家族相似的特殊插入序列,特点是缺少了末端反向重复序列(Inverted repeats, IRs),在插入位点不产生直接重复序列,并通过滚环式(Rolling circle, RC)进行转座。ISCR元件作为一种新的基因捕获系统,它可以移动邻近的任何DNA序列,为耐药基因在不同种属细菌间水平传播提供了高效的媒介。世界各地多种革兰氏阴性病原菌中已发现有19种ISCR元件,大部分ISCR元件同时携带了多种耐药基因,提示ISCR有可能会造成细菌多重耐药性的快速传播。本文就ISCR结构特征、类型、移动方式、起源及进化的研究进展进行了综述。  相似文献   

3.
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.  相似文献   

4.
贺羽  王帅  李慧  冯小刚  商学兵 《微生物学通报》2019,46(12):3424-3431
整合性接合元件(Integrative and conjugative elements,ICEs)主要介导原核生物间遗传信息的横向基因交换,在细菌毒性、耐药性、抗重金属等特性传播上发挥关键作用。ICEs的水平转移极大地加速了抗性基因在同种及不同种属之间的传播,造成细菌的耐药以至多重耐药问题日益严重,耐药机制日趋复杂;同时ICEs的接合转移过程受细菌Ⅳ型分泌系统(Type Ⅳ secretion system,T4SS)影响。本文着重从ICEs的基因结构、接合转移过程以及T4SS组成元件的结构进行概述,并对T4SS各组件间相互作用的研究进展进行了初步探讨。  相似文献   

5.
6.
稀土元素对植物的生物效应及其作用机理   总被引:48,自引:0,他引:48  
何跃君  薛立 《应用生态学报》2005,16(10):1983-1989
综述了稀土元素对植物根系发育、生物量、品质和抗逆性的影响.适量稀土浓度可促进植物生长,提高种子萌发能力和根系发育,提高植物生物量,并改善植物果实的品质.施用适量稀土元素还可以增强植物的抗逆性并且对一些植物病害有一定防治作用.介绍了植物对稀土元素的吸收特性和稀土元素在植物体内的含量、分布、存在形式及细胞定位.重点探讨了稀土元素对植物光合作用、叶绿素形成、植物吸收营养元素、稀土元素与钙相关性和稀土元素对细胞膜及酶的作用机理,内容包括稀土元素可提高植物叶绿素含量,增强光合效率,从而增加植物生物量.适量的稀土元素能够促进植物对营养元素的吸收、转化和利用.稀土元素有类似钙的功能,可置换出酶中的钙离子而参与酶的反应.稀土离子可以维持细胞膜的透性和稳定性,提高膜的保护功能,增强植物对不良环境的抵御能力.最后,对稀土元素的研究前景进行了展望.  相似文献   

7.
Bacterial resistance to antibiotics is often plasmid-mediated and the associated genes encoded by transposable elements. These elements play a central role in evolution by providing mechanisms for the generation of diversity and, in conjunction with DNA transfer systems, for the dissemination of resistances to other bacteria. At the University Hospital of Zaragoza, extensive efforts have been made to define both the dissemination and evolution of antibiotic resistance by studying the transferable R plasmids and transposable elements. Here we describe the research on bacterial resistance to antibiotics in which many authors listed in the references have participated. The aspects of bacterial resistance dealt with are: (i) transferable resistance mediated by R plasmids in Gram-negative bacteria, (ii) R plasmid-mediated resistance to apramycin and hygromycin in clinical strains, (iii) the transposon Tn1696 and the integron In4, (iv) expression of Escherichia coli resistance genes in Haemophilus influenzae, (v) aminoglycoside-modifying-enzymes in the genus Mycobacterium with no relation to resistance, and (vi) macrolide-resistance and new mechanisms developed by Gram-positive bacteria.  相似文献   

8.
细菌遗传元件水平转移与抗生素抗性研究进展   总被引:2,自引:0,他引:2  
细菌可移动遗传元件包括噬菌体、质粒、转座子、插入序列、整合子、基因组岛(genomic island and genomic islet)等,其中接合性质粒、转座子、整合子及基因组岛等是与抗生素抗性有关的元件,可以在向种甚至于不同种菌株间水平转移,加速了临床上耐药及多重耐药菌株的产生。综述了细菌与抗生素抗性有关的可移动遗传元件的种类、特征及转移机制的研究进展。  相似文献   

9.
肺炎克雷伯菌是目前临床上最主要的耐药致病菌之一,对人类健康造成了很大威胁.近年来,细菌耐药成为治疗肺炎克雷伯菌感染的主要难题,尤其是高毒力、高耐药性肺炎克雷伯菌的出现对临床工作造成了巨大挑战,而研究表明其耐药基因和毒力基因主要由可移动遗传元件携带而传播.因此,为了更好地认识及防控肺炎克雷伯菌感染,本文对肺炎克雷伯菌基因...  相似文献   

10.
The rice disease resistance gene Xa21, which encodes a receptor-like kinase, is a member of a multigene family. Based on comparisons of genomic?sequences of seven family members, seventeen transposon-like elements were identified in the 5′ and 3′ flanking regions and introns of these genes. Sequence characterization revealed that these elements are diverse, showing similarity to maize Ds, CACTA and miniature inverted repeat-like elements, as well as novel elements. Only two elements were located in presumed coding regions, indicating that integration of transposable elements at the Xa21 disease resistance locus occurred preferentially in noncoding regions.  相似文献   

11.
Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.  相似文献   

12.
Complexity and robustness of cancer hypoxic microenvironment are supported by the robust signaling networks of autocrine and paracrine elements creating powerful interactome for multidrug resistance. These elements generate a positive feedback loops responsible for the extreme robustness and multidrug resistance in solid cancer, leukemia, myeloma, and lymphoma. Phosphorylated AKT is a cancer multidrug resistance locus. Targeting that locus by oxidant/antioxidant balance modulation, positive feedback loops are converted into negative feedback loops, leading to disappearance of multidrug resistance. This is a new principle for targeting cancer multidrug resistance by the locus chemotherapy inducing a phenomenon of loops conversion. J. Cell. Physiol. 228: 671–674, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.  相似文献   

14.
别路垚  徐海 《微生物学通报》2015,42(11):2215-2222
整合性接合元件是近年来在细菌中发现的一种可移动的基因元件,它位于染色体上,可通过接合转移的方式介导细菌间基因的水平转移。这种基因的水平转移有助于细菌适应特定的环境条件,但许多整合性接合元件包含耐药基因,这些遗传元件的水平转移极大地加速了耐药基因在同种及不同种属之间的传播,造成细菌的耐药以至多重耐药问题日益严重,耐药机制日趋复杂;同时整合性接合元件与基因岛有着密切的联系,因此对其特征及转移机制进行研究很有必要。  相似文献   

15.
近十年来,植物抗病分子机制研究取得显著进展。综述了植物抗病基因的克隆及其结构分析、病原菌无毒基因及其相关致病因子的克隆与研究、信号传导相关因子的克隆及其结构分析以及植物-病原菌的相互作用研究,重点介绍了以植物特异抗病基因为介导的诱导防卫作用机制(包括抗病基因编码毒素蛋白,进而抑制病原菌的繁殖;显性基因编码病原菌致病性的靶标物;抗病基因表达产物直接引发抗病反应和基因对基因的抗病作用机制等)的研究进展,以期为植物抗病育种提供有益的信息。  相似文献   

16.
The evolution of class 1 integrons and the rise of antibiotic resistance   总被引:3,自引:0,他引:3  
Class 1 integrons are central players in the worldwide problem of antibiotic resistance, because they can capture and express diverse resistance genes. In addition, they are often embedded in promiscuous plasmids and transposons, facilitating their lateral transfer into a wide range of pathogens. Understanding the origin of these elements is important for the practical control of antibiotic resistance and for exploring how lateral gene transfer can seriously impact on, and be impacted by, human activities. We now show that class 1 integrons can be found on the chromosomes of nonpathogenic soil and freshwater Betaproteobacteria. Here they exhibit structural and sequence diversity, an absence of antibiotic resistance genes, and a phylogenetic signature of lateral transfer. Some examples are almost identical to the core of the class 1 integrons now found in pathogens, leading us to conclude that environmental Betaproteobacteria were the original source of these genetic elements. Because these elements appear to be readily mobilized, their lateral transfer into human commensals and pathogens was inevitable, especially given that Betaproteobacteria carrying class 1 integrons are common in natural environments that intersect with the human food chain. The strong selection pressure imposed by the human use of antimicrobial compounds then ensured their fixation and global spread into new species.  相似文献   

17.
The Tn21 subgroup of bacterial transposable elements   总被引:20,自引:0,他引:20  
The Tn3 family of transposable elements is probably the most successful group of mobile DNA elements in bacteria: there are many different but related members and they are widely distributed in gram-negative and gram-positive bacteria. The Tn21 subgroup of the Tn3 family contains closely related elements that provide most of the currently known variation in Tn3-like elements in gram-negative bacteria and that are largely responsible for the problem of multiple resistance to antibiotics in these organisms. This paper reviews the structure, the mechanism of transposition, the mode of acquisition of accessory genes, and the evolution of these elements.  相似文献   

18.
陈琳琳  李宝泉 《生态学杂志》2015,26(10):3215-3225
抗生素抗性基因(antibiotic resistance genes, ARGs)作为一种新型的环境污染物,成为多个学科关注的焦点.其在不同环境介质中的扩散和传播具有极大的环境危害性,对人类健康造成严重威胁.插入序列共同区(insertion sequence common region, ISCR),是一种新发现的抗性基因传播元件,因其特殊的遗传结构,能够通过滚环复制及同源重组等机制移动邻近的任何DNA序列,是ARGs在不同DNA分子或不同种属细菌间水平传播的高效媒介.目前世界上发现了27种ISCR元件.大量间接证据表明,ISCR可能与许多耐药基因的移动和扩散有关,特别是多重耐药性(multiple drug resistance, MDR)形成与传播.因此,ISCR很可能是抗生素抗性基因在环境中扩散传播的关键因子.本文就ARGs水平传播、ISCR结构特征、ISCR种类及其相关ARGs及其研究方法等进行综述,并揭示ISCR元件可能的生态风险,提出了今后的研究重点,以期为今后深入开展相关研究打下基础.  相似文献   

19.
目的 探讨一组多重耐药肺炎克雷伯菌(MDR-KPN)中获得性耐药相关基因和可移动遗传元件遗传标记的存在状况以及二者的相关性.方法 收集2008年8月至2010年5月浙江省杭州市和湖州市6所医院共47株MDR-KPN,采用聚合酶链反应(PCR)的方法分析74种获得性耐药基因和24种可移动遗传元件遗传标记,并用指标聚类分析(SPSS法)分析获得性耐药相关基因和可移动遗传元件遗传标记的相关性.结果 47株MDR-KPN共检出5种β-内酰胺类获得性耐药基因、6种氨基糖苷类获得性耐药基因、3种喹诺酮类获得性耐药基因、6种其他获得性耐药基因、1种整合子遗传标记、2种转座子遗传标记、4种插入序列遗传标记、2种接合性质粒遗传标记和1种噬菌体原标记;指标聚类分析(SPSS法)将上述阳性检出基因分成A、B两大簇.结论 指标聚类分析提示获得性耐药相关基因和可移动遗传元件密切相关;由Ⅰ类整合子( intI1)、插入序列(IS26、ISEcp1、ISKpn6)、耐药质粒(trbC)介导的TEM-1和KPC是本组菌株的特征.在肺炎克雷伯菌中做指标聚类分析为国内首次报道.  相似文献   

20.
Mindlin SZ  Petrova MA  Bass IA  Gorlenko ZhM 《Genetika》2006,42(11):1495-1511
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic producers, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号