首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional mapping of reticulospinal, vestibulospinal, and vestibulo–ocular neuron groups onto specific axonal pathways was determined in the chicken embryo by retrograde axonal tracing. Experiments were performed on in vitro preparations of the brain stem to allow for precisely localized tracer injections combined with selective lesions of axon tracts. Brain-stem neuron groups were labelled from 3 days of embryonic development, when the first reticulospinal axons reached the cervical spinal cord, to 9 days of embryonic development, when each of the three systems studied had acquired a relatively mature organization. A striking feature at all stages was the spatial segregation of many neuron groups that projected along different trajectories. Examples of such segregation were found for neuron groups projecting in the same tract on different sides of the brain stem, in different tracts on the same side of the brain stem, and rostrally versus caudally. The occurrence of this segregation from early stages suggests that the choice of projection pathway by many brain-stem neurons is in some way linked to cell position. In some regions of the brain stem, neuron groups projecting along different pathways are intermingled. At least some of this intermingling, however, appars to occur subsequent to the initial establishment of axon projection patterns. Comparison of the mapping patterns at progressively older stages, and with previous mapping in the 11-day-old embryo (Glover and Petursdottir, 1988; Petursdottir, 1990) suggests that these projections are established with little error. The one obvious example of remodelling involved the pontine reticulospinal projection, in which an early contralateral axon population appeared to retract from spinal to medullary levels over the course of a few days. A similar phenomenon may be involved in the elimination of part of the contralateral reticulospinal projection from the midmedulla.  相似文献   

2.
The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.  相似文献   

3.
The mesencephalic V neurons and tectobulbar axons in chick embryo project over long distances that appear during the early development of the chick optic tectum. The mesencephalic V neuron and tectobulbar axonal growth begin at Hamburger and Hamilton stage 14 and stage 18, respectively. Both fibers proceed downward from the dorsal to the ventral side of the lateral wall of the optic tectum and then turn caudally and join the medial longitudinal fasciculus. Their axons appear in the most superficial layer of the tectum at early stages and do not cross the dorsal midline of the tectum. Here, we report the role of draxin, a recently identified axon guidance protein, in the formation of the ventrally directed tectum axonal tracts in chicken embryo. draxin is expressed in a high dorsal to low ventral gradient in chick optic tectum. In vitro experiments show that draxin repels neurite outgrowth from dorsal tectum explants. In vivo overexpression resulted in inhibition or misrouting of axon growth in the tectum. Therefore, draxin may be an important member of the collection of repulsive guidance molecules that regulate the formation of the ventrally directed tectum axon tracts.  相似文献   

4.
An immunocytochemical method that localizes GABA in glutaraldehyde-fixed tissue has been applied to the study of the Xenopus embryo spinal cord. This procedure stained an anatomical class of neuron, which had somata forming two more or less continuous rows, one on either side of the central canal, in the ventral part of the spinal cord. The total number of stained neurons in the stage 37-38 embryo spinal cord was about 300. The medial surface on the soma protruded into the central canal and had a brush border which electron microscope studies showed to consist of many microvilli or stereocilia and one or two cilia. The external end of the neuron soma had an ipsilateral ascending axon. The axon of many of these neurons had a growth cone which was also clearly stained. We propose calling these neurons 'Kolmer-Agduhr cells' after W. Kolmer and E. Agduhr who described them in the spinal cords of many vertebrate classes. Their early embryonic origin, GABA-like immunoreactivity, axonal projections and distribution as a whole population have not previously been known.  相似文献   

5.
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the “projection envelope” of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.  相似文献   

6.
We have addressed the control of longitudinal axon pathfinding in the developing hindbrain, including the caudal projections of reticular and raphe neurons. To test potential sources of guidance signals, we assessed axon outgrowth from embryonic rat hindbrain explants cultured in collagen gels at a distance from explants of midbrain-hindbrain boundary (isthmus), caudal hindbrain, or cervical spinal cord. Our results showed that the isthmus inhibited caudally directed axon outgrowth by 80% relative to controls, whereas rostrally directed axon outgrowth was unaffected. Moreover, caudal hindbrain or cervical spinal cord explants did not inhibit caudal axons. Immunohistochemistry for reticular and raphe neuronal markers indicated that the caudal, but not the rostral projections of these neuronal subpopulations were inhibited by isthmic explants. Companion studies in chick embryos showed that, when the hindbrain was surgically separated from the isthmus, caudal reticulospinal axon projections failed to form and that descending pioneer axons of the medial longitudinal fasciculus (MLF) play an important role in the caudal reticulospinal projection. Taken together, these results suggest that diffusible chemorepellent or nonpermissive signals from the isthmus and substrate-anchored signals on the pioneer MLF axons are involved in the caudal direction of reticulospinal projections and might influence other longitudinal axon projections in the brainstem.  相似文献   

7.
In the developing embryo,nascent axons navigate towards their specific targets to establish the intricate network of axonal connections linking neurons within the mature nervous system.Molecular navigational systems comprising repulsive and attractive guidance cues form chemotactic gradients along the pathway of the exploring growth cone.Axon-bound receptors detect these gradients and determine the trajectory of the migrating growth cone.In contrast to their benevolent role in the developing nervous system,repulsive guidance receptors are detrimental to the axon’s ability to regenerate after injury in the adult.In this review we explore the essential and beneficial role played by the chemorepulsive Wnt receptor,Ryk/Derailed in axon navigation in the embryonic nervous system(the Yin function).Specifically,we focus on the role of Wnt5a/Rykmediated guidance in the establishment of two major axon tracts in the mammalian central nervous system,the corticospinal tract and the corpus callosum.Recent studies have also identified Ryk as a major suppressor of axonal regeneration after spinal cord injury.Thus,we also discuss this opposing aspect of Ryk function in axonal regeneration where its activity is a major impediment to axon regrowth(the Yang function).  相似文献   

8.
Anurans offer a unique opportunity to study the development of neuronal connections. Transition from the aquatic limbless tadpole to the juvenile occurs over a protracted period of time during which the animal is accessible for experimental studies. Moreover, tract-tracing studies have demonstrated that their descending brain stem pathways show remarkable similarities in origin, course and site of termination to those of mammals. A developmental sequence in the formation of descending pathways to the spinal cord has been shown implying that reticulospinal and vestibulospinal fibers innervate spinal segments very early in development, whereas the red nucleus projects spinalwards definitely later in development. In anurans, this developmental sequence parallels the changes observed in locomotor pattern. The ingrowth of descending pathways into the spinal cord possibly occurs along so-called 'pre-existing' tracts. Several hypotheses on guidance cues in axonal pathfinding will be discussed.  相似文献   

9.
Eph receptor tyrosine kinases and their ephrin ligands are involved in some of the most important steps during the development of the central nervous system, including cell migration, axon guidance, topographic mapping and synapse formation. Moreover, in the adult, they have been implicated in plasticity and regulation of neural stem cell function. One member of the Eph family, EphA4, can bind to both classes of ephrins and may have multiple functions in nervous system development. In order to look for potential sites of EphA4 action during central nervous system development, we conducted a spatio-temporal analysis of EphA4 protein expression. We used immunohistochemistry in preference to in situ hybridization because of the high likelihood that EphA4 protein is expressed on axon tracts, long distances from EphA4 mRNA. In the telencephalon, EphA4 was expressed in the developing cortex from embryonic day 11 (E11) and, later, on major cortical tracts including the corpus callosum and cortico-spinal tract. Robust EphA4 expression was also found in the hippocampus and fornix, and cells and tracts in the striatum. In the diencephalon, the thalamus, the hypothalamus and thalamo-cortical projection were strongly positive. In the mesencephalon, a number of different nuclei were weakly positive, most prominently the red nucleus. In the rhombencephalon, many nuclei were strongly positive including the cerebellum and one of its afferent paths, the inferior cerebellar peduncle, as well as the olivary region. In the spinal cord, there was a dynamic pattern of expression through development, with persistent expression in the dorsal funiculus and ventral grey matter.  相似文献   

10.
Alpha1-tubulin expression occurs in a neural-specific, temporally regulated, and regeneration-inducible fashion in zebrafish. A GFP reporter driven by the alpha1-tubulin promoter in transgenic zebrafish acts as a stable, in vivo molecular tag that follows neuronal development from birth/specification through postmitotic differentiation to axonal outgrowth and synaptogenesis. We exploited this transgenic system in a reporter expression-dependent (morphology-independent) mutagenesis screen to identify disruptions in genetic loci essential for neuronogenesis and axon elaboration, which would manifest as visually appreciable perturbations in GFP fluorescence. Thirty-two such recessive mutations were obtained, a subset of which was screened through a secondary RNA quantification-based assay to eliminate housekeeping gene defects. Three representative loci, when characterized in detail, were found to exhibit missteps in discrete, sequential stages of embryonic neuronal development. Mutation in sookshma panneurally diminishes the neural precursor pool by affecting cell proliferation in the developing embryo while patterning along the neuraxis remains unperturbed. Disruption of drishti on the other hand ameliorates the mitotic neural population by affecting cell cycle exit of progenitors and stalling their progression to the postmitotic neuronal stage, without impairing subsequent cell fate determination or differentiation. Finally, dhruva is required during neuronal differentiation for axonal branching and terminal innervation in spinal motoaxons and the retinotectal projection. Molecular identification of these loci and analysis of the remaining mutational repertoire will offer unique insights into the genetic inputs that go on to make a mature, differentiated neuron.  相似文献   

11.
The development of identified reticulospinal neurons of the zebrafish (Brachydanio rerio) was studied in order to learn if cell specific differences in axonal projection are correlated with cell specific differences in time of neuronal development. We examined the development of individually known reticulospinal neurons that are located in close proximity in the hindbrain but that project axons to targets on opposite sides of the spinal cord. We observed that these identified neurons are generated together, and that their axons first arrive in the spinal cord together. We suggest that the selection of different axonal pathways by these neurons does not depend on the time that they develop.  相似文献   

12.
The origin of spinal locomotor strip fibers was investigated in cats by applying electrical stimulation and the retrograde axonal horseradish peroxidase transport technique. It was found to be mainly composed of corticospinal tract fibers. Moderate numbers of reticulospinal tract and trigeminal spinal tract fibers were also observed. Descending projections from brain stem catecholaminergic neuronal groups do not pass through the test sites of the dorsolateral funiculus, nor, apparently, do they go to make up the spinal locomotor strip. Specificity of the brain stem and spinal locomotor region is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 327–335, May–June, 1989.  相似文献   

13.
The cockroach Periplaneta americana is an evolutionary basal neopteran insect, equipped with one of the largest and most elaborate mushroom bodies among insects. Using intracellular recording and staining in the protocerebrum, we discovered two new types of neurons that receive direct input from the optic lobe in addition to the neuron previously reported. These neurons have dendritic processes in the optic lobe, projection sites in the optic tracts, and send axonal terminals almost exclusively to the innermost layer of the MB calyces (input site of MB). Their responses were excitatory to visual but inhibitory to olfactory stimuli, and weak excitation occurred in response to mechanosensory stimuli to cerci. In contrast, interneurons with dendrites mainly in the antennal lobe projection sites send axon terminals to the middle to outer layers of the calyces. These were excited by various olfactory stimuli and mechanosensory stimuli to the antenna. These results suggest that there is general modality-specific terminal segregation in the MB calyces and that this is an early event in insect evolution. Possible postsynaptic and presynaptic elements of these neurons are discussed.  相似文献   

14.
The character of activation of medullary reticulospinal neurons by collaterals of pyramidal fibers was investigated in cats anesthetized with pentobarbital (40 mg/kg) or a mixture of chloralose (45 mg/kg) and pentobarbital (15 mg/kg). The experiments were carried out on animals after preliminary destruction of the contralateral red nucleus and division of the ipsilateral dorsolateral fasciculus in segment C4. A conditioning technique showed that pre- and postsynaptic effects arising in the medullary gigantocellular nucleus to stimulation of the cortex and of the isolated dorsolateral funiculus are due to activation of collaterals of pyramidal fibers projecting into the brain stem. In most reticulospinal neurons tested, stimulation of the fasciculus induced monosynaptic EPSPs. Their generation was due to influences transmitted via fast- and slow-conducting pyramidal fibers. Pyramidal fibers with different conduction velocities are distributed irregularly in the pyramidal tract in the cervical region of the spinal cord. Mainly slowly-conducting fibers are found in its medial zones and fast-conducting pyramidal fibers in its lateral zones. The results are evidence that in cats fibers of the pyramidal tract, running into the spinal cord, can activate medullary reticulospinal neurons directly.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 495–503, September–October, 1977.  相似文献   

15.
Acetylcholine (ACh) responses were elicited by ionophoresis from neurons, located in the medial pontine reticular formation, which were antidromically identified as having axons projecting in the reticulospinal tracts. Most neurons were silent at rest and could be caused to discharge at a regular, slow rate by a constant application of glutamate. ACh altered this slow rate of firing in 28 of 29 cells but showed three different patterns of effect: approximately one-third were excited, one-third were inhibited, and one-third showed biphasic inhibition-excitation. The ACh responses were not sensitive to atropine. These observations suggest that reticulospinal neurons have ACh receptors mediating both inhibition and excitation, perhaps located on different portions of the same neuron.  相似文献   

16.
Yoshida Y  Han B  Mendelsohn M  Jessell TM 《Neuron》2006,52(5):775-788
As different classes of sensory neurons project into the CNS, their axons segregate and establish distinct trajectories and target zones. One striking instance of axonal segregation is the projection of sensory neurons into the spinal cord, where proprioceptive axons avoid the superficial dorsal horn-the target zone of many cutaneous afferent fibers. PlexinA1 is a proprioceptive sensory axon-specific receptor for sema6C and sema6D, which are expressed in a dynamic pattern in the dorsal horn. The loss of plexinA1 signaling causes the shafts of proprioceptive axons to invade the superficial dorsal horn, disrupting the organization of cutaneous afferents. This disruptive influence appears to involve the intermediary action of oligodendrocytes, which accompany displaced proprioceptive axon shafts into the dorsal horn. Our findings reveal a dedicated program of axonal shaft positioning in the mammalian CNS and establish a role for plexinA1-mediated axonal exclusion in organizing the projection pattern of spinal sensory afferents.  相似文献   

17.
Eph receptor tyrosine kinases and their ephrin ligands are involved in some of the most important steps during the development of the central nervous system, including cell migration, axon guidance, topographic mapping and synapse formation. Moreover, in the adult, they have been implicated in plasticity and regulation of neural stem cell function. One member of the Eph family, EphA4, can bind to both classes of ephrins and may have multiple functions in nervous system development. In order to look for potential sites of EphA4 action during central nervous system development, we conducted a spatio-temporal analysis of EphA4 protein expression. We used immunohistochemistry in preference to in situ hybridization because of the high likelihood that EphA4 protein is expressed on axon tracts, long distances from EphA4 mRNA. In the telencephalon, EphA4 was expressed in the developing cortex from embryonic day 11 (E11) and, later, on major cortical tracts including the corpus callosum and cortico-spinal tract. Robust EphA4 expression was also found in the hippocampus and fornix, and cells and tracts in the striatum. In the diencephalon, the thalamus, the hypothalamus and thalamo-cortical projection were strongly positive. In the mesencephalon, a number of different nuclei were weakly positive, most prominently the red nucleus. In the rhombencephalon, many nuclei were strongly positive including the cerebellum and one of its afferent paths, the inferior cerebellar peduncle, as well as the olivary region. In the spinal cord, there was a dynamic pattern of expression through development, with persistent expression in the dorsal funiculus and ventral grey matter.  相似文献   

18.
Employment of enhancer elements to drive expression of reporter genes in neurons is a widely used paradigm for tracking axonal projection. For tracking axonal projection of spinal interneurons in vertebrates, germ line-targeted reporter genes yield bilaterally symmetric labeling. Therefore, it is hard to distinguish between the ipsi- and contra-laterally projecting axons. Unilateral electroporation into the chick neural tube provides a useful means to restrict expression of a reporter gene to one side of the central nervous system, and to follow axonal projection on both sides 1 ,2-5. This video demonstrates first how to handle the eggs prior to injection. At HH stage 18-20, DNA is injected into the sacral level of the neural tube, then tungsten electrodes are placed parallel to the embryo and short electrical pulses are administered with a pulse generator. The egg is sealed with tape and placed back into an incubator for further development. Three days later (E6) the spinal cord is removed as an open book preparation from embryo, fixed, and processed for whole mount antibody staining. The stained spinal cord is mounted on slide and visualized using confocal microscopy.  相似文献   

19.
Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development.  相似文献   

20.
Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号