首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In myelin basic protein (MBP)-specific TCR-transgenic (Tg) mice, peripheral T cells express the Valpha2.3/Vbeta8.2-Tg TCR, demonstrate vigorous proliferative responses to MBP in vitro, and can exhibit experimental autoimmune encephalomyelitis (EAE) within 5 days of pertussis toxin injection. We explored the effects of oral administration of MBP on the cellular trafficking of the MBP-specific TCR-Tg cells and the ability of oral MBP to protect Tg mice from EAE. Tg mice were fed MBP, OVA or vehicle and sacrificed at various times after feeding. An immediate and dramatic decrease in Valpha2.3/Vbeta8.2(+)-Tg cells was observed in the periphery within 1 h after feeding. By 3 days after feeding, the percentage of Tg cells increased to near control levels, but decreased again by 10 days. When MBP or vehicle-fed Tg mice were challenged for EAE at this point, disease was severe in the vehicle-fed mice and reduced in the MBP-fed mice over the 40-day observation period. In vitro studies revealed a biphasic pattern of MBP proliferative unresponsiveness and an induction of Th1 cytokines. Immunohistochemical staining showed that the number of Tg cells found in the intestinal lamina propria increased dramatically as the number of Tg cells in the periphery decreased. There was no apparent proliferation of Tg cells in the lamina propria, indicating that Tg cells trafficked there from the periphery. Taken together, these results suggest that T cell trafficking into the site of Ag deposition acts to protect the TCR-Tg mouse from EAE.  相似文献   

2.
Whereas ghrelin is produced primarily in the stomach, a small amount of it is produced in pancreatic islets. Although exogenous administration of ghrelin suppresses insulin secretion in vitro or in vivo, the role of intraislet ghrelin in the regulation of insulin secretion in vivo remains unclear. To understand the physiological role of intraislet ghrelin in insulin secretion and glucose metabolism, we developed a transgenic (Tg) mouse model, rat insulin II promoter ghrelin-internal ribosomal entry site-ghrelin O-acyl transferase (RIP-GG) Tg mice, in which mouse ghrelin cDNA and ghrelin O-acyltransferase are overexpressed under the control of the rat insulin II promoter. Although pancreatic desacyl ghrelin levels were elevated in RIP-GG Tg mice, pancreatic ghrelin levels were not altered in animals on a standard diet. However, when Tg mice were fed a medium-chain triglyceride-rich diet (MCTD), pancreatic ghrelin levels were elevated to ~16 times that seen in control animals. It seems likely that the gastric ghrelin cells possess specific machinery to provide the octanoyl acid necessary for ghrelin acylation but that this machinery is absent from pancreatic β-cells. Despite the overexpression of ghrelin, plasma ghrelin levels in the portal veins of RIP-GG Tg mice were unchanged from control levels. Glucose tolerance, insulin secretion, and islet architecture in RIP-GG Tg mice were not significantly different even when the mice were fed a MCTD. These results indicate that intraislet ghrelin does not play a major role in the regulation of insulin secretion in vivo.  相似文献   

3.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   

4.
Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS). Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.  相似文献   

5.
Arthritis-susceptible B10.RIII mice, maintained on either fish oil (FO) or corn oil (CO) diets (5% by weight), and amyloid-susceptible CBA/J mice fed chow diets were given 20 micrograms purified LPS by i.p. injection. Both strains of mice responded to LPS with a 20- to 30-fold increase in plasma amyloid P component (AP) levels. There were no differences in the response between males and females or between FO and CO treatment groups. The data demonstrated that cultured peritoneal macrophages (M phi) respond to LPS stimulation with increased secretion of AP. In contrast to plasma AP levels, the MO response to LPS stimulation, as measured by production of AP, was influenced by both gender and diet. Although M phi from both male and female mice on the CO diet and male mice on the FO diet responded similarly, those from female mice on the FO diet secreted only 25 to 35% as much AP as did the other three groups. There were no dietary effects on the LPS-induced serum amyloid A protein response nor was there detectable serum amyloid A protein produced by the M phi. These results demonstrate that unstimulated, resident peritoneal M phi secrete AP as a normal constituent and in increasing amounts in response to LPS stimulation.  相似文献   

6.
The adhesion G-protein-coupled receptor CD97 is present in normal colonic enterocytes but overexpressed in colorectal carcinoma. To investigate the function of CD97 in colorectal carcinogenesis, transgenic Tg(villin-CD97) mice overexpressing CD97 in enterocytes were generated and subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis. Unexpectedly, we found a CD97 cDNA copy number-dependent reduction of DSS-induced colitis in Tg compared to wild-type (WT) mice that was confirmed by applying a simple DSS protocol. Ultrastructural analysis revealed that overexpression of CD97 strengthened lateral cell-cell contacts between enterocytes, which, in contrast, were weakened in CD97 knockout (Ko) mice. Transepithelial resistance was not altered in Tg and Ko mice, indicating that tight junctions were not affected. In Tg murine and normal human colonic enterocytes as well as in colorectal cell lines CD97 was localized preferentially in E-cadherin-based adherens junctions. CD97 overexpression upregulated membrane-bound but not cytoplasmic or nuclear β-catenin and reduced phospho-β-catenin, labeled for degradation. This was associated with inactivation of glycogen synthase kinase-3β (GSK-3β) and activation of Akt. In summary, CD97 increases the structural integrity of enterocytic adherens junctions by increasing and stabilizing junctional β-catenin, thereby regulating intestinal epithelial strength and attenuating experimental colitis.  相似文献   

7.
MUC1 transgenic (MUC1.Tg) mice have widely been used as model recipients of cancer immunotherapy with MUC1. Although MUC1.Tg mice have previously been shown to be immunologically tolerant to MUC1, the involvement of regulatory T (Treg) cells in this phenotype remains unclear. Here, we showed that numbers of Treg cells in MUC1-expressing tumors were greater in MUC1.Tg mice than in control C57BL/6 (B6) mice, and that the growth of tumor cells expressing MUC1, but not that of control cells, in MUC1. Tg mice was faster than in B6 mice. The MUC1.Tg mice appeared to develop MUC1-specific peripheral tolerance, as transferred MUC1-specific T cells were unable to function in MUC1.Tg mice but were functional in control B6 mice. The suppressive function of CD4+CD25high cells from MUC1.Tg mice was more potent than that of cells from control B6 mice when Treg cell activity against MUC1-specific T cells was compared in vitro. Therefore, the enhanced growth of MUC1-expressing tumor cells in MUC1.Tg mice is likely due to the presence of MUC1-specific Treg cells.  相似文献   

8.
Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice (Ucp3-/-), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3-/- mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3-/- mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-D-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3-/- mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3-/- mice. When challenged with a 45% fat diet, Ucp3-/- mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.  相似文献   

9.
An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.  相似文献   

10.
Heme oxygenase-1 (HO-1) is a stress-responsive enzyme with potent anti-oxidant and anti-inflammatory activities. Previous studies have shown that systemic induction of HO-1 by chemical inducers reduces adiposity and improves insulin sensitivity. To dissect the specific function of HO-1 in adipose tissue, we generated transgenic mice with adipose HO-1 overexpression using the adipocyte-specific aP2 promoter. The transgenic (Tg) mice exhibit similar metabolic phenotype as wild type (WT) control under chow-fed condition. High fat diet (HFD) challenge significantly increased the body weights of WT and Tg mice to a similar extent. Likewise, HFD-induced glucose intolerance and insulin resistance were not much different between WT and Tg mice. Analysis of the adipose tissue gene expression revealed that the mRNA levels of adiponectin and interleukin-10 were significantly higher in chow diet-fed Tg mice as compared to WT counterparts, whereas HFD induced downregulation of adiponectin gene expression in both Tg and WT mice to a similar level. HFD-induced proinflammatory cytokine expression in adipose tissues were comparable between WT and transgenic mice. Nevertheless, immunohistochemistry and gene expression analysis showed that the number of infiltrating macrophages with preferential expression of M2 markers was significantly higher in the adipose tissue of obese Tg mice than WT mice. Further experiment demonstrated that myeloid cells from Tg mice expressed higher level of HO-1 and exhibited greater migration response toward chemoattractant in vitro. Collectively, these data indicate that HO-1 overexpression in adipocytes does not protect against HFD-induced obesity and the development of insulin resistance in mice.  相似文献   

11.
The product of human herpesvirus 8 (HHV-8) open reading frame 74 (ORF74) is related structurally and functionally to cellular chemokine receptors. ORF74 activates several cellular signaling pathways in the absence of added ligands, and NIH 3T3 cells expressing ORF74 are tumorigenic in nude mice. We have generated a line of transgenic (Tg) mice with ORF74 driven by the simian virus 40 early promoter. A minority (approximately 30%) of the Tg mice, including the founder, developed tumors resembling Kaposi's sarcoma (KS) lesions, which occurred most typically on the tail or legs. The tumors were highly vascularized, had a spindle cell component, expressed VEGF-C mRNA, and contained a majority of CD31(+) cells. CD31 and VEGF-C are typically expressed in KS. Tumors generally (but not always) occurred at single sites and most were relatively indolent, although several mice developed large visceral tumors. ORF74 was expressed in a minority of cells in the Tg tumors and in a few other tissues of mice with tumors; mice without tumors did not express detectable ORF74 in any tissues tested. Cell lines established from tumors expressed ORF74 in a majority of cells, expressed VEGF-C mRNA, and were tumorigenic in nude mice. The resultant tumors grew rapidly, metastasized, and continued to express ORF74. Cell lines established from these secondary tumors also expressed ORF74 and were tumorigenic. These data strongly suggest that ORF74 plays a role in the pathology of KS and confirm and extend previous findings on the tumorigenic potential of ORF74.  相似文献   

12.
The aim of the present study was to investigate whether low flaxseed doses relevant to human dietary exposure can prevent mammary tumors in transgenic Tg.NK mice, a model of breast cancer. Animals were exposed to flaxseed through the diet at human relevant levels. Tumor-related parameters and tumor development were evaluated. Hepatic cytochrome P450 and glutathione S-transferase activities were significantly reduced in animals receiving low flaxseed doses. An incidence of palpable tumors before sacrifice, a number of tumors per mouse, and a number of large tumors (>6 mm diameter) at necropsy were statistically significantly lower in the high flaxseed group compared to controls, suggesting a beneficial effect on tumor progression of small dietary doses of flaxseed. However, the number of tumor-bearing mice and multiplicity of tumors at necropsy were not statistically significantly lower compared to the controls. Thus, the effect of small dietary doses of flaxseed on mammary tumor development in Tg.NK mice remains to be established.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-011-0214-1) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
Activation of Wnt signaling through beta-catenin/TCF complexes is a key event in the development of various tumors, in particular colorectal and liver tumors. Wnt signaling is controlled by the negative regulator conductin/axin2/axil, which induces degradation of beta-catenin by functional interaction with the tumor suppressor APC and the serine/threonine kinase GSK3beta. Here we show that conductin is upregulated in human tumors that are induced by beta-catenin/Wnt signaling, i.e., high levels of conductin protein and mRNA were found in colorectal and liver tumors but not in the corresponding normal tissues. In various other tumor types, conductin levels did not differ between tumor and normal tissue. Upregulation of conductin was also observed in the APC-deficient intestinal tumors of Min mice. Inhibition of Wnt signaling by a dominant-negative mutant of TCF downregulated conductin but not the related protein, axin, in DLD1 colorectal tumor cells. Conversely, activation of Wnt signaling by Wnt-1 or dishevelled increased conductin levels in MDA MB 231 and Neuro2A cells, respectively. In time course experiments, stabilization of beta-catenin preceded the upregulation of conductin by Wnt-1. These results demonstrate that conductin is a target of the Wnt signaling pathway. Upregulation of conductin may constitute a negative feedback loop that controls Wnt signaling activity.  相似文献   

15.
Obesity increases severity of acute pancreatitis (AP) by unclear mechanisms. We investigated the effect of the PPAR-gamma agonist rosiglitazone (RGZ, 0.01% in the diet) on severity of AP induced by administration of IL-12+ IL-18 in male C57BL6 mice fed a low fat (LFD) or high fat diet (HFD), under the hypothesis that RGZ would reduce disease severity in HFD-fed obese animals. In both LFD and HFD mice without AP, RGZ significantly increased body weight and % fat mass, with significant upregulation of adiponectin and suppression of erythropoiesis. In HFD mice with AP, RGZ significantly increased survival and hastened recovery from pancreatic inflammation, as evaluated by significantly improved pancreatic histology, reduced saponification of visceral adipose tissue and less severe suppression of erythropoiesis at Day 7 post-AP. This was associated with significantly lower circulating and pancreas-associated levels of IL-6, Galectin-3, osteopontin and TIMP-1 in HFD + RGZ mice, particularly at Day 7 post-AP. In LFD mice with AP, RGZ significantly worsened the degree of intrapancreatic acinar and fat necrosis as well as visceral fat saponification, without affecting other parameters of disease severity or inflammation. Induction of AP lead to major suppression of adiponectin levels at Day 7 in both HFD and HFD + RGZ mice. In conclusion, RGZ prevents development of severe AP in obese mice even though it significantly increases adiposity, indicating that obesity can be dissociated from AP severity by improving the metabolic and inflammatory milieu. However, RGZ worsens selective parameters of AP severity in LFD mice.  相似文献   

16.
Chen L  Na R  Gu M  Salmon AB  Liu Y  Liang H  Qi W  Van Remmen H  Richardson A  Ran Q 《Aging cell》2008,7(6):866-878
H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase localized in mitochondria. To understand the cellular and physiological roles of mitochondrial H(2)O(2) in aging and pathogenesis of age-associated diseases, we generated transgenic mice overexpressing Prdx3 (Tg(PRDX3) mice). Tg(PRDX3) mice overexpress Prdx3 in a broad range of tissues, and the Prdx3 overexpression occurs exclusively in the mitochondria. As a result of increased Prdx3 expression, mitochondria from Tg(PRDX3) mice produce significantly reduced amount of H(2)O(2), and cells from Tg(PRDX3) mice have increased resistance to stress-induced cell death and apoptosis. Interestingly, Tg(PRDX3) mice show improved glucose homeostasis, as evidenced by their reduced levels of blood glucose and increased glucose clearance. Tg(PRDX3) mice are also protected against hyperglycemia and glucose intolerance induced by high-fat diet feeding. Our results further show that the inhibition of GSK3 may play a role in mediating the improved glucose tolerance phenotype in Tg(PRDX3) mice. Thus, our results indicate that reduction of mitochondrial H(2)O(2) by overexpressing Prdx3 improves glucose tolerance.  相似文献   

17.
We previously found that provirus insertion in T cell tumors of mouse mammary tumor virus/c-myc transgenic (Tg) mice induced two forms of Notch1 mutations. Type I mutations generated two truncated molecules, one intracellular (IC) (Notch1(IC)) and one extracellular (Notch1(EC)), while in type II mutations Notch1 was deleted of its C terminus (Notch1(DeltaCT)). We expressed these mutants in Tg mice using the CD4 promoter. Both Notch1(IC) and Notch1(DeltaCT), but not Notch1(EC), Tg mice developed double-positive (DP) thymomas. These disseminated more frequently in Notch1(DeltaCT) Tg mice. Double (Notch1(IC) x myc) or (Notch1(DeltaCT) x myc) Tg mice developed thymoma with a much shorter latency than single Tg mice, providing genetic evidence of a collaboration between these two oncogenes. FACS analysis of preleukemic thymocytes did not reveal major T cell differentiation anomalies, except for a higher number of DP cells and an accumulation of TCR(high)CD2(high)CD25(high) DP cells in Notch1(IC), and less so in Notch1(DeltaCT) Tg mice. This was associated with enhanced in vivo thymocyte proliferation. However, Notch1(IC), but not Notch1(DeltaCT), DP thymocytes were protected against apoptosis induced in vivo by dexamethasone and anti-CD3 and in vitro by anti-CD3/CD28 Abs. This indicates that the C terminus of Notch1 and/or the conserved regulation by its ligands have a significant impact on the induced T cell phenotype. Therefore, Notch1(IC) and Notch1(DeltaCT) behave as oncogenes for T cells. Because these two Notch1 mutations are very similar to those described in some forms of human T cell leukemia, these Tg mice may represent relevant models of these human leukemias.  相似文献   

18.
Immunosuppression by UV light contributes significantly to the induction of skin cancer by suppressing the cell-mediated immune responses which control the development of carcinogenesis. The B7/CD28-CTLA-4 signaling pathway provides costimulatory signals essential for Ag-specific T cell activation. To investigate the role of this pathway in photocarcinogenesis, we utilized transgenic (Tg) mice which constitutively express CTLA-4Ig, a high-affinity CD28/CTLA-4 antagonist that binds to both B7-1 and B7-2. The transgene is driven by a skin-specific promoter yielding high levels of CTLA-4Ig in the skin and serum. Chronic UV exposure of CTLA-4Ig Tg mice resulted in significantly reduced numbers of skin tumors, when compared to control mice. In addition, Tg mice were resistant to UV-induced suppression of delayed-type hypersensitivity responses to alloantigens. Most importantly, upon stimulation with mitogens and alloantigens, T cells isolated from CTLA-4Ig Tg mice produced significantly less IL-4 but more IFN-gamma compared to control T cells, suggesting an impaired Th2 response and a relative increase of Th1-type immunity. Together, these data show that overall B7 engagement directs immune responses toward the Th2 pathway. Moreover, they point out the crucial role of Th1 immune reactions in the protection against photocarcinogenesis.  相似文献   

19.
Hedgehog (Hh) proteins and cAMP-dependent protein kinase A (PKA) generally play opposing roles in developmental patterning events. Humans and mice heterozygous for mutations in the sonic hedgehog (Shh) receptor gene patched-1 (ptc1) have an increased incidence of certain types of cancer, including medulloblastoma (MB), a highly aggressive tumor of the cerebellum. Despite the importance of PKA in Hh signaling, little is known about how PKA activity is regulated in the context of Hh signaling, or the consequences of improper regulation. One molecule that can influence PKA activity is pituitary adenylyl cyclase-activating peptide (PACAP), which has been shown to regulate cerebellar granule precursor proliferation in vitro, a cell population thought to give rise to MB. To test for a PACAP/Hh interaction in the initiation or propagation of these tumors, we introduced a PACAP mutation into ptc1 mutant mice. Deletion of a single copy of PACAP increased MB incidence approximate 2.5-fold, to 66%, thereby demonstrating that PACAP exerts a powerful inhibitory action on the induction, growth or survival of these tumors. Tumors from PACAP/ptc1 mutant mice retained PACAP receptor gene expression, and exhibited superinduction of Hh target genes compared to those from ptc1+/- mice. Moreover, PACAP inhibited proliferation of cell lines derived from tumors in a PKA-dependent manner, and inhibited expression of the Hh target gene gli1. The results provide genetic evidence that PACAP acts as a physiological factor that regulates the pathogenesis of Hh pathway-associated MB tumors.  相似文献   

20.
We assessed the possibility of C57BL/6-Tg (Meg1/Grb10)isn(Meg1 Tg) mice as a non-obese type 2 diabetes (2DM) animal model. Meg1 Tg mice were born normal, but their weight did not increase as much as normal after weaning and showed about 85% of normal size at 20 weeks of age. Body mass index of Meg1 Tg mice was also smaller than that of control mice. The glucose tolerance test and insulin tolerance test showed that Meg1 Tg mice had reduced ability to normalize the blood glucose level. Blood urea nitrogen (BUN) in Meg1 Tg mice (19.6 +/- 1.2 mg/dl) was significantly lower than in controls (22.0 +/- 0.8 mg/dl), while plasma triglyceride, insulin, adiponectin, and resistin levels were significantly higher (202.0 +/- 23.4 mg/dl vs 146.3 +/- 23.4 mg/dl, 152.4 +/- 16.3 pg/ml vs 88.1 +/- 16.9 pg/ml, 74.4 +/- 10.9 microg/ml vs 48.3 +/- 7.0 microg/ml, and 4.0 +/- 0.2 ng/ml vs 3.6 +/- 0.2 ng/ml, respectively). Body, visceral fat weight and liver weights were significantly lower (19.6 +/- 0.4 g vs 24.3 +/- 0.3 g, 376.7 +/- 29.6 mg to 507.5 +/- 23.0 mg, and 906.0 +/- 41.8 mg to 1,001.0 +/- 15.1 mg, respectively). Thus, hyperinsulinemia observed in Meg1 Tg mice indicates that their insulin signaling pathway is somehow inhibited. With high fat diet, the diabetes onset rate of Meg1 Tg mice increased up to 60%. These results suggest that Meg1 Tg mice resemble human 2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号