首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Résumé Ce travail est consacré à l'identification des cellules sécrétant respectivement LH et FSH chez le Porc. Les caractères morphologiques de ces deux lignées cellulaires ont été précisés grâce à deux techniques de coloration: l'APS-bleu de méthazol-orange G et l'APS-bleu alcian-orange G. Cette dernière technique est la seule à révéler que les grandes cellules de la zone médiane auxquelles avait été précédemment attribuée la sécrétion de FSH se scindent en deux classes distinctes: les unes ne réagissent qu'à l'APS, les autres réagissent simultanément à l'APS et au bleu alcian.Les modifications hypophysaires caractérisant les phases du cycle oestral, la castration, la cryptorchidie, l'administration d'un antiovulatoire concordent à démontrer que l'activité LH est exercée par une lignée spécifique de cellules glycoprotidiques caractérisées par la disposition de leurs granulations en amas distincts. Les mêmes conditions physiologiques ou expérimentales suggèrent que seules parmi les cellules basophiles de la zone médiane, celles qui réagissent simultanément à l'APS et au bleu alcian participent à l'activité gonadotrope de l'hypophyse et sécrètent vraisemblablement FSH.Le microscope électronique précise les caractères distinctifs des deux formes gonadotropes. Elles diffèrent l'une de l'autre par la structure de leurs granulations et l'aspect de leur ergastoplasme. Les cellules LH se repèrent aisément grâce à la disposition de leurs granulations en amas distincts et le microscope électronique confirme leur hypertrophie fonctionnelle à la suite de la castration. D'autre part, le microscope électronique confirme également la dualité des cellules basophiles occupant la région médiane de la glande et l'étude de ces cellules basophiles chez le castrat démontre bien que seule, l'une de ces formes cellulaires subit une vacuolisation massive de son ergastoplasme.L'attribution de l'activité LH aux cellules glycoprotidiques dont les granulations sont réparties en amas distincts est confirmée par une réaction d'immuno-fluorescence réalisée à partir d'un immun-sérum spécifique vis-à-vis de l'hormone LH.
The gonadotropic cells in the pigs hypophysis
Summary The present paper concerns the identification of LH -and FSH-secreting cells in the hypophysis of the pig. The morphological characteristics of the involved cell types can be accurately demonstrated by two staining techniques: PAS-methazol: blue-Orange G and PAS-Alcian blue-Orange G. Only the second of these methods reveals that the large cells of the median region, usually considered as FSH-secretory, can be separated into two cells types; some of them stain exclusively with PAS, the other ones stain simultaneously with PAS and Alcian blue.The cytological modifications of the hypophyseal structure observed in different functional conditions (f.i. during the different phases of the oestrous cycle, after castration, in cryptorchidism, after administration of antiovulatory drugs) point to an identical conclusion, namely that the secretion of LH must be ascribed to a specific glycoprotidic cell type, identified by a peculiar clusterlike disposition of the cytoplasmic granules. On the other hand, the cytological observations suggest that, among the basophil cells of the median region, only those which stain simultaneously with PAS and Alcian blue have a gonadotrope function and are most probably FSH-secreting.The electron microscope allows a precise distinction between the two gonadotrope cell types, based on the aspect of the ergastoplasm and the structure of the granules. The LH cells are easily identified by the characteristic disposition of the granules in clusters or clumps. Their hypertrophy after castration is confirmed by EM observations.On the other hand the EM confirmes the duality of the basophil cells of the median region; since, after castration, one of the two cell types only shows a massive vacuolisation of the ergastoplasm.Finally, the LH-secretory function of the glycoprotidic cells with clump like aspect of the granules is confirmed by their immuno-fluorescence reaction towards a specific anti-LH serum.
  相似文献   

3.
4.
Résumé L'étude de l'hypophyse de l'Anguille femelle jaune ou argentée, et celle de trois Anguilles femelles mûres confirment l'identification fonctionnelle des six types cellulaires, en particulier somatotrope et gonadotrope, établie antérieurement à la suite d'une expérimentation variée chez le mâle.Les différences entre les aspects des cellules corticotropes du mâle et de la femelle sont minimes; il en est de même pour les cellules thyréotropes, bien que celles-ci paraissent un peu moins actives chez la femelle. Les cellules à prolactine sont souvent plus actives chez la femelle, et caractérisées par le développement d'un ergastoplasme basal riche en acide ribonucléique.Les cellules somatotropes sont aussi beaucoup plus nombreuses et généralement plus actives chez la femelle dont la croissance est très prolongée, aboutissant à un dimorphisme sexuel marqué.Les cellules gonadotropes sont normalement peu différenciées, assez peu nombreuses, et ne présentent pas de stimulation spontanée décelable chez les individus capturés en eau douce. Chez l'Anguille femelle mûre, le développement numérique de ces cellules est énorme, avec invasion de la pars distalis rostrale; l'accroissement volumétrique est aussi considérable (10 à 12 fois le volume de celles de la femelle argentée). L'élaboration d'abondantes granulations glycoprotéiques reflète l'activité fonctionnelle de ces cellules, mais leur distinction en deux catégories est assez difficile à réaliser à l'aide des techniques histochimiques classiques. Elle peut cependant être établie grâce au PAS-hématoxyline au plomb, mais elle reste d'une interprétation délicate.L'examen des trois Anguilles mûres confirme l'involution des cellules à gprolactine lors d'un séjour prolongé en eau de mer, involution déjà constatée chez le mâle argenté.La pars intermedia est composée de deux types de cellules sans que l'on puisse préciser lequel des deux élabore l'intermédine; la neurohypophyse renferme deux types de neurosécrétat, l'un PAS positif en fins chapelets dans la région antérieure, l'autre AF positif et bleu alcian positif, dans la zone postérieure, réparti en amas plus volumineux, formant de gros corps de Herring, chez les femelles de poids élevé. Le neurosécrétat est raréfié chez les Anguilles mûres.
Summary The pituitary glands of 45 yellow or silver female eels and of 3 mature females were studied. The results confirm the functional identification of six cell types, mainly the somatotrophic and gonadotrophic cells, previously established after various experiments in the silver male eel or just before silvering.There is only a slight difference between the corticotrophic cells of the male and that of the female eels; there is a similar minimal difference for the thyreotrophic cells; however, they may look slightly less active in the female. The prolactin cells are more often active in the female, and characterized by development of a basal ergastoplasm with abundant ribonucleic acid. The somatotrophic cells are much more numerous and generally more active in the female whose growth is prolonged, so that an evident sexual dimorphism is present.Normally, the gonadotrophic cells are almost undifferentiated and do not show a spontaneous stimulation which can be detected in eels collected in freshwater. The mature female eel presents a considerable increase of the number of these cells which are hypertrophied and tend to invade the rostral pars distalis. The cell volume is multiplied by 10 to 12. Numerous granules, rich in glycoproteins, indicate a functional hyperactivity. The distinction between the two types of gonadotrophic cells is not as apparent as in salmon, however, it can be achieved with the PAS-lead hematoxylin technique, but its interpretation remains difficult.In the three mature female eels, kept in seawater for several months, the prolactin cells are regressed, corroborating a previous experiment on male eels.The pars intermedia is composed of two cell types, but their functional significance remains uncertain. The neurohypophysis contains two types of neurosecretory material, one is PAS positive, localized in the anterior region, the other one is AF and alcian blue positive, in the posterior region, composing larger masses and forming voluminous Herring bodies in the biggest females.


Nous remercions vivement Monsieur le Professeur M. Fontaine qui a bien voulu nous confier l'étude des hypophyses des Anguilles femelles mûres. Le traitement de ces animaux a été assuré par Mademoisselle E. Bagot que nous remercions ainsi que Mademoiselle J. Olivereau, du CNRS, qui a effectué toute la technique histologique des glandes examinées et nous a aidée dans l'illustration de cette publication.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Introduction

Atoms theory and symmetry theory dominated physics. Symmetry propagation and interactions verify the Curie principle. But its violation by symmetry breaking is spontaneous.Fragility is creative. An information breaks a generalized symmetry. Results on symmetry breakings are not valid for fuzzy symmetries. The breaking of a fuzzy symmetry leads only to a pour symmetry (Fig.1). Homogeneity breaking, and atom of time are not usual concepts. We examine in this work symmetry breakings which generate the living time.

Relativistic Time-Space Breaking

  1. Medium and environment of living define ordinary referential of space and referential of time. Astronomical phenomena following classical mechanics and microphysical phenomena following quantum mechanics can be written with the same t coordinate.
  2. Relativity corrections. Schrödinger's Quantum mechanics (Eq.0) approximately governs molecular systems (Relativity corrections can be expressed as physical effects in the above defined referential).
  3. Time reversal symmetry. The well-known Wigner's transformation determines the microscopic reversibility.
  4. The three essential particle-vacancy equilibria. This transformation is verified by all particle-vacancy reciprocity. Vacancy moves like particle but with negative moment and positive kinetic energies. Only three biochemical equilibria admit this time reversal symmetry, namely: oxydo-reduction, acido-basicity, fluidity-viscosity. In these case, reacting electron, solvated proton, water molecule are respectively antagonist of the corresponding vacancy.
  5. Fuzzy character of time reversal symmetry. Dirac's equation does not admit this symmetry which only appears at the “non relativistic” limit of quantum phenomena. Hence particle-vacancy reciprocity is fuzzy according to the experimental evidence. (Laforgue et al., 1988).

Oriented Time

  1. From the universal reversible time, an additional breaking generates the oriented time, both in the astronomical and in the living matter.
  2. Irreversibility for the environment. We refer to Prigogine and Stengers (1988).
  3. Irreversibility for the living matter. We refer to Lochak (1986). Because equation (0), above discussed, is “microreversible” the second breaking could come from an additional term vanishing in the stationary states but increasing with time in evolutionary processes.
  4. Negative times. Taking into account the fuzzy character of the time reversed symmetry, the third breaking cannot suppress completely the occurrence of negative times. Reversed time is controlled by direct time. Except in the three above reported cases, time reversal symmetry is not verified by the medium. Free motion of the particle following eg.(0) or of the vacancy following time reversal reciprocal equation takes place only during short jumps from an interaction site to an other. Fig. 2 schematizes the law of motion of the electric charge corresponding to the transport by proton or by proton vacancy in an unitary field (fluctuations are neglected). The reserved jumps are estimated in the range of 10?12s. It is not excluded that such a jump can control a direct phenomenon.
  5. The living time. Biological phenomenon appears as an oriented set of events. Nevertheless latency or exaltation phases could be perceived. This modulation could be described by positive and negative times additional to the basic time. (Negative can be interpreted as above)

Living produces Time

  1. That were not understandable, if time was only a frame, in which change occurs. Taking chance as frame and time as effect, we regard biological activity as integrating reversible and irreversible time. Living synchronizes internal and external time by its own effort as it results (Lestienne, 1990) from Chronobiology.
  2. Time modulation. Let us consider the dy1...dyi...dyp changes in the variables of the systems, dy={dyi} has produced dt. We proof (eq.(1) to (4)) that time is modulated by a φ(y) speed coefficient depending on the medium. tmodulated=tφ (y) ?1
  3. The production of reversible time (e.g.acido-basicity) determines time modulation. As above reported it remains some reversibility effects (jumps of negative time) which modulate time. E.G., if an important amount of reagent is necessary to modify an acid-base equilibrium, φ(y) is small.
  4. Time modulation and activation-repression reciprocity. As well-known, long tmodulated means repression, short tmodulated means exaltation. Extrema of ? are symmetrical because particle and vacancy are reciprocal. Nevertheless reciprocity is not perfect. E.g., on fig. 3, the wet receptor determines the cell increasing, the dry receptor the cell senescence of a certain alga (Lück, 1962).
  5. Irreversible time production. Medium accepts entropy. Hence it acts in the second breaking of time. Living extracts the free energy from the medium, like a dissipative structure. That insures an operative point far from the thermodynamical equilibrium.

Consumption of Time

  1. The three followings correspond to the more trivial time consumption.
  2. Rhythmical time. Free energy flux is favourable to the arising of order in space or time. This later gives a structure to the living time.
  3. Mutual dependence of reversible time and rhythms. Time irreversible structure can be controlled by the above considered particle-vacancy equilibrium. Consequently the living time (modulated and structured) is a chemical time connected to molecular properties and to statistical thermodynamics. Practically, the connection between chronobiology and chemistry is important. The use of drugs could be interpreted as a response to an aggression against biorhythms.
  4. Lifetime. The dead-birth rythm can be broken in two ways: evolution or indefinite life. This later is non exceptional for the living matter, e.g. in the vegetals where it is connected with the chlorophyllic assimilation; the time reversal significance of which is evident.
  5. The plan of the alchemist. Indefinitely life has fascinated individuals. Do the human species becomes better adapted by a longer life?

Conclusions

  1. Atoms of time could exist.
  2. Biological time is defined by the breaking of five generalized symmetries, namely: Minkovski's space symmetry, reversibility, homogeneity, rhythmicity, generations reproduction.
  3. Environment and medium determine non relativistic, oriented, structured time.
  4. At the microphysical scale, a fuzzy time reversal symmetry takes place, the breaking of which is not complete. Reversible time and dominating irreversible time are integrated in living phenomena.
  5. Three fundamental particle-vacancy reciprocities admit a part of reversibity. Irreversibility governs the all others phenomena.
  6. Time is produced chemically.
  7. A new perspective is the connection between chemical equilibria and rhythms including the time of the life.
  相似文献   

15.
16.
E. Heitz 《Planta》1925,1(2):241-259
Ohne Zusammenfassung  相似文献   

17.
Ohne Zusammenfassung Mit 8 Textabbildungen  相似文献   

18.
19.
20.
Upper Visean plant-bearing cherts have been discovered in association with others yielding a Stephanian A flora, in conglomerates (poudingue mosaïque) from the base of the Stephanian B at Grand'Croix. It confirms the distant source, from the Roanne region, of the Dinantian elements during the initial basin sedimentation and constitutes an excellent example of complex reworking of fossil plant material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号