共查询到20条相似文献,搜索用时 15 毫秒
1.
T Kuno Y Ono M Hirai S Hashimoto H Shuntoh C Tanaka 《Biochemical and biophysical research communications》1987,146(2):878-883
Complementary DNA (cDNA) clones encoding the regulatory subunit of the type I cAMP-dependent protein kinase (R-I) were isolated by screening of rat brain cDNA libraries. A 1.5-kilobase (kb) cDNA insert containing the entire coding region was sequenced and full amino acid sequence has been deduced from the nucleotide sequence. The clone encodes for a protein of 380 amino acids that shows 97% homology to the bovine R-I subunit. Northern blot analysis demonstrated two major mRNA species (2.8 and 4.4 kb in size) in rat brain and liver. 相似文献
2.
M Sandberg K Taskén O Oyen V Hansson T Jahnsen 《Biochemical and biophysical research communications》1987,149(3):939-945
A 1.5 kilobase (kb) cDNA clone containing the entire coding region for a regulatory subunit of type I cAMP-dependent protein kinase (RI) was isolated from a human testis cDNA library. The cDNA clone encodes a protein of 381 amino acids that shows 98% and 97% homology to the bovine skeletal muscle RI and rat brain RI, respectively. Northern blot analysis demonstrates two major mRNA-species (1.5 and 3.0 kb) in human testis and one mRNA-species (3.0 kb) in human T-lymphocytes. 相似文献
3.
Molecular cloning, cDNA structure, and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells 总被引:13,自引:0,他引:13
T Jahnsen L Hedin V J Kidd W G Beattie S M Lohmann U Walter J Durica T Z Schulz E Schiltz M Browner 《The Journal of biological chemistry》1986,261(26):12352-12361
One isoform of the regulatory subunit of type II cAMP-dependent protein kinase (R-II51; Mr = 51,000) and its electrophoretic variants (R-II51.5 and R-II52; Mr = 51,500 and 52,000, respectively) are selectively induced by estradiol and follicle-stimulating hormone (cAMP) in rat ovarian granulosa cells. To ascertain the amino acid sequence of R-II51 and to gain insight into the molecular events regulating the intracellular content of ovarian follicular R-II51, we constructed a lambda gt11 cDNA expression library from poly(A)+ RNA of hormone-primed rat granulosa cells. A 1.5-kilobase (kb) cDNA insert, isolated from a plaque-purified R-II antibody positive bacteriophage clone, selectively bound R-II51 mRNA as demonstrated by analysis of the hybrid-selected translation product. Restriction maps and sequence analyses of the 1.5-kb cDNA insert and of the 1.8- and 2.2-kb cDNA inserts from two additional clones showed overlapping sequences which span a region of 3065 nucleotides in size. The 1.5- and 1.8-kb cDNA inserts each contained poly(A) addition signals (1508 and 1761 nucleotides, respectively), terminal poly(A) sequences, and the entire coding region for R-II51 (1204 nucleotides) except for a small number of nucleotides at the 5' end. The 2.2-kb cDNA insert contained 394 nucleotides of the coding region a long 3' untranslated region and two more poly(A) addition signals (3041 and 3059 nucleotides). An amino acid microsequence surrounding the autophosphorylation site of pure rat ovarian R-II51 agreed with the amino acid sequence deduced from the nucleotide sequence of the cDNA. Northern blot analyses demonstrated two major mRNA species (1.8 and 3.2 kb in size) in hormone-primed rat ovaries which were approximately 10- and 50-fold greater than the R-II mRNA content in rat brain and rat heart, respectively. Southern blot analysis of rat liver DNA indicated that a single gene codes for R-II51 mRNA. Structural differences among rat ovarian R-II51, rat heart R-II54, and the known amino acid sequences of bovine R-II and R-I subunits also indicate that the rat ovarian R-II51 subunit is the product of a distinct gene. 相似文献
4.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together. 相似文献
5.
M Sandberg F O Levy O Oyen V Hansson T Jahnsen 《Biochemical and biophysical research communications》1988,154(2):705-711
The regulatory subunit of cAMP-dependent protein kinase designated RII beta (RII51) has previously been shown to be the product of a separate gene. This was accomplished by the molecular cloning of a partial cDNA clone estimated to lack 30-45 nucleotides of the 5' end of the coding region. We hereby report the isolation of a cDNA clone for RII beta from rat granulosa cells, extending 43 nucleotides further 5' compared with the previously published cDNA sequence, and from which the entire amino acid sequence (415 residues) of the rat RII beta protein can be deduced. A cAMP regulated mRNA of 3.2 kilobases (kb) for RII beta was detected by the isolated cDNA in rat Sertoli cells. 相似文献
6.
Expression cloning of a cDNA encoding the type II regulatory subunit of the cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
We report here the isolation and sequence of a cDNA for the type II regulatory subunit of the cAMP-dependent protein kinase (cAMP-PK) from a lambda gt-11 cDNA library derived from a porcine epithelial cell line (LLC-PK1). The cDNA was detected by immunological screening using an affinity purified polyclonal antibody for bovine RII. DNA sequence analysis of the 467 bp EcoRI insert confirmed the identity of the clone, because the deduced amino acid sequence corresponded to the published sequence for the bovine RII protein. Northern analysis of total RNA from the LLC-PK1 cells indicated a single mRNA species of about 6.0 kb, probably derived from a single copy gene. 相似文献
7.
Mapping of the regulatory subunits RI beta and RII beta of cAMP-dependent protein kinase genes on human chromosome 7. 总被引:2,自引:0,他引:2
R Solberg P Sistonen A L Tr?skelin D Bérubé J Simard P Krajci T Jahnsen A de la Chapelle 《Genomics》1992,14(1):63-69
The genes encoding the regulatory subunits RI beta (locus PRKAR1B) and RII beta (locus PRKAR2B) of human cAMP-dependent protein kinase have been mapped in the basic CEPH (Centre d'Etude du Polymorphisme Humain) family panel of 40 families to chromosome 7p and 7q, respectively, using the enzymes HindIII and BanII recognizing the corresponding restriction fragment length polymorphisms (RFLPs). Previous data from the CEPH database and our present RFLP data were used to construct a six-point local framework map including PRKAR1B and a seven-point framework map including PRKAR2B. The analysis placed PRKAR1B as the most distal of the hitherto mapped 7p marker loci and resulted in an unequivocal order of pter-PRKAR1B-D7S21-D7S108-D7S17-D7S149- D7S62-cen, with a significantly higher rate of male than female recombination between PRKAR1B and D7S21. The 7q regulatory gene locus, PRKAR2B, could also be placed in an unambigous order with regard to the existing CEPH database 7q marker loci, the resulting order being cen-D7S371-(COL1A2,D7S79)-PRKAR2B-MET-D7S87++ +-TCRB-qter. Furthermore, in situ hybridization to metaphase chromosomes physically mapped PRKAR2B to band q22 on chromosome 7. 相似文献
8.
I S Singh Z J Luo A Eng J Erlichman 《Biochemical and biophysical research communications》1991,178(1):221-226
The promoter and exon 1 of the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a mouse genomic library. The 5'-flanking DNA lacked TATA and CAAT sites but contained GC rich regions typically found in constitutively expressed house keeping genes. Fusion gene constructs, containing RII beta 5'-flanking sequences and the bacterial CAT structural gene, were transfected into NB2a neuroblastoma cells and CHO cells. The NB2a cells expressed high levels of CAT activity. CHO cells expressed CAT activity at 5% of the level seen in the NB2a cells. Transfection of deletion constructs into both cell lines was used to define the core promoter and enhancer elements. The core promoter was situated between bp -291/-121. An enhancer element was located between bp -1426/-1018. 相似文献
9.
J Weiss D A DeManno R E Cutler E J Brooks J Erlichman B D Sanwal M Hunzicker-Dunn 《Biochimica et biophysica acta》1992,1136(2):208-218
Based upon recent reports that the rat testis exhibits mRNAs for cAMP-dependent protein kinase (A-kinase) regulatory (R) subunits RI alpha, RI beta, RII alpha, and RII beta, this study was designed to identify R proteins present in extracts of germ cell-rich testis from adult and Sertoli cell-enriched, germ cell-poor testis from 14-15-day-old rats. Following separation by DEAE-cellulose, R subunits were identified by Mr: (a) upon labeling with 8-N3[32P]cAMP and 32P in an RII phosphorylation reaction and; (b) by Western blot analysis using R-specific antibodies on one- and two-dimensional gel electrophoresis. Elution of R subunits as catalytic (C) subunit-free dimers or in association with C subunits to form holoenzyme was determined by their sedimentation characteristics on sucrose gradient centrifugation in conjunction with their cAMP-stimulated activation characteristics on Eadie-Scatchard analysis. Soluble extracts of testes, from both adult and 14-15 day-old rats, showed the presence of a prominent type I holoenzyme containing RI alpha subunits (47 kDa, peak 1), a minor type II holoenzyme, containing RII beta subunits (52 kDa, peak 2), and a second, more abundant, type II holoenzyme peak containing predominantly RII alpha and, to a lesser extent RII beta subunits (peak 3). The 53 kDa RI beta protein predicted by mRNA studies was only tentatively identified by Western blot analysis. Testes extracts of 14-15-day-old, but not adult, rats exhibited high levels of C subunit-free RI alpha, a result not predicted by mRNA studies. This latter result may be attributable to direct RI alpha regulation or to indirect RII beta regulation at a time during testis development prior to germ cell maturation. 相似文献
10.
T Kristensen I Schousboe E Boel E M Mulvihill R R Hansen K B M?ller N P M?ller L Sottrup-Jensen 《FEBS letters》1991,289(2):183-186
Human beta 2-glycoprotein (beta 2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature beta 2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb, respectively, hybridizing specifically with the beta 2gpI cDNA. Upon isoelectric focusing, recombinant beta 2gpI obtained from expression of beta 2gpI cDNA in baby hamster kidney cells showed the same pattern of bands as beta 2gpI isolated from plasma, and at least 5 polypeptides were visible. 相似文献
11.
12.
Colletotrichum trifolii is a plant pathogenic fungus causing alfalfa anthracnose. Prepenetration development, including conidial germination and
appressorial formation, are requisite for successful infection. Pharmacological data from our laboratory indicated a role
for a cAMP-dependent protein kinase (PKA) pathway during these early morphogenic transitions. Thus, the cloning and characterization
of the genes for PKA catalytic and regulatory subunits were undertaken to more precisely determine the function of PKA during
C. trifolii pathogenic growth and development. In this report, the cloning, sequencing, and partial characterization of the gene encoding
the regulatory subunit of cAMP-dependent protein kinase (Ct-PKAR) is described. An open reading frame of 1,212 bp containing 404 predicted amino acid residues was identified. Database analysis
revealed that the deduced amino acid sequence of Ct-PKAR shares considerable similarity with that of PKA regulatory subunits in other organisms, particularly in the conserved regions.
Furthermore, the Ct-PKAR protein is classified as a type II regulatory subunit based on the presence of the hallmark autophosphorylation
site. Southern blot analysis indicated that Ct-PKAR is a single-copy gene. Northern blot analysis showed that the expression of Ct-PKAR is developmentally regulated. Ct-PKAR was shown to be a functional regulatory subunit of PKA by complementating the Neurospora crassa mcb mutant, which has a temperature-sensitive mutation in the regulatory subunit of PKA.
Received: 26 August 1998 / Accepted: 30 December 1998 相似文献
13.
S J Beebe O Oyen M Sandberg A Fr?ysa V Hansson T Jahnsen 《Molecular endocrinology (Baltimore, Md.)》1990,4(3):465-475
Two different mammalian genes for the catalytic subunit (C) of cAMP-dependent protein kinase have previously been characterized (C alpha, C beta). In the present study, we report the molecular cloning of a third isoform of C, from a human testis cDNA library, as well as the isolation of human cDNAs for C alpha and C beta. This third form of C, which we will designate C gamma, is clearly derived from a distinct gene and shows a tissue-specific expression. A close evolutionary relation between C gamma and C alpha was suggested by nucleotide homologies (86% inside the open reading frame, 81% in the 3'-untranslated region). Thus, the C gamma cDNA cross-hybridized with the 2.8 kilobase (kb) C alpha mRNA, present at high levels in most human tissues, as well as with a 1.8 kb C gamma-specific mRNA, which was only found at detectable levels in human testis. However, at the amino acid level, C alpha and C beta showed a close relationship (93% homology), whereas C gamma diverged significantly from both C alpha (83%) and C beta (79%). Taken together with the tissue-specific expression of C gamma, this suggests a pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP-dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits. 相似文献
14.
Ning Qin Michael R D'Andrea Mary-Lou Lubin Navid Shafaee Ellen E Codd Ana M Correa 《European journal of biochemistry》2003,270(23):4762-4770
The voltage gated sodium channel comprises a pore-forming alpha subunit and regulatory beta subunits. We report here the identification and characterization of a novel splicing variant of the human beta1 subunit, termed beta1B. The 807 bp open reading frame of the human beta1Beta subunit encodes a 268 residue protein with a calculated molecular mass of 30.4 kDa. The novel human beta1B subunit shares an identical N-terminal half (residues 1-149) with the human beta1 subunit, but contains a novel C-terminal half (residues 150-268) of less than 17% sequence identity with the human beta1 subunit. The C-terminal region of the human beta1B is also significantly different from that of the rat beta1A subunit, sharing less than 33% sequence identity. Tissue distribution studies reveal that the human beta1Beta subunit is expressed predominantly in human brain, spinal cord, dorsal root ganglion and skeletal muscle. Functional studies in oocytes demonstrate that the human beta1B subunit increases the ionic current when coexpressed with the tetrodotoxin sensitive channel, NaV1.2, without significantly changing voltage dependent kinetics and steady-state properties, thus distinguishing it from the human beta1 and rat beta1A subunits. 相似文献
15.
16.
17.
A H Hirsch S B Glantz Y Li Y You C S Rubin 《The Journal of biological chemistry》1992,267(4):2131-2134
The A-Kinase Anchor Protein AKAP 75 (formerly designated bovine brain P75) is a particulate brain protein that avidly binds the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta (Bregman, D. B., Hirsch, A.H. and Rubin, C.S. (1991) J. Biol. Chem. 266, 7207-7213). The formation of stable AKAP 75.RII beta complexes provides a potential mechanism for targeting physiological signals carried by cAMP to specific effector sites within neurons and other brain cells. We have now cloned and characterized the AKAP 75 gene. Its coding sequence is novel and unexpectedly short (1284 base pairs) and contains no introns. When the AKAP 75 gene was transfected into HEK 293 cells, a new RII beta-binding protein with an apparent Mr of 75,000 accumulated. A high proportion (approximately 65%) of the AKAP 75 gene product was excluded from the cytoplasm and was recovered in the 40,000 x g pellet derived from disrupted transfected cells. In contrast, cells transfected with a construct encoding 249 amino acids from the central and C-terminal regions of AKAP 75 produced an RII beta-binding protein (apparent Mr = 45,000) that was exclusively cytosolic. AKAP 75 is a novel protein composed of only 428 amino acid residues (Mr = 47,878). A highly acidic C-terminal region mediates the binding of RII beta (and cAMP-dependent protein kinase II beta), whereas a positively charged N-terminal segment contains structural features that are essential for the association of AKAP 75 with the cytoskeleton and/or intracellular membranes. 相似文献
18.
In mammalian brain, physiological signals carried by cAMP seem to be targeted to intraneuronal sites by the association of cAMP-dependent protein kinase II beta with anchoring proteins that bind the regulatory subunit (RII beta) of the enzyme. Previously, an RII beta-binding domain was characterized in a large (Mr approximately 150,000) candidate anchor protein, rat brain P150 (Bregman, D. B., Bhattacharyya, N., and Rubin, C. S. (1989) J. Biol. Chem. 264, 4648-4656). RII beta-binding proteins with Mr values of 65,000-80,000 were detected in the brains of other species. Since little was known about the structural features of these lower Mr proteins, we undertook the characterization of bovine brain P75 as a prototype. A cDNA encoding 258 amino acid residues at the C terminus of P75 was cloned by probing a lambda gt11 expression library with 32P-RII beta. The cDNA insert was ligated into the pET-3b expression plasmid, and large amounts of the partial P75 polypeptide (designated P47) were produced in Escherichia coli. A purification scheme that yielded 9 mg of soluble P47 from a 1-liter bacterial culture was devised. Antibodies directed against the P47 polypeptide revealed that P75 is expressed almost exclusively in brain. The sequence of 117 amino acid residues at the C terminus of P75 contains the RII beta-binding site and is 80% identical to the corresponding region of P150. In contrast, a lower level of identity (36%) between P75 and P150 at a more N-terminal region indicates that the two RII beta-binding proteins are related, but distinct proteins. P75 is not homologous to microtubule-associated protein 2, an RII alpha-selective binding protein, or any other previously studied proteins. C-terminal truncation analysis disclosed that the final 26 residues in P75 are essential for binding RII beta. 相似文献