首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional parathyroid hormone (PTH) and PTH-like peptide receptors were expressed in Xenopus laevis oocytes after injection of poly(A)+ RNA isolated from the rat osteogenic sarcoma cell line, UMR 106. Increases in cAMP were seen in individual oocytes in response to added bovine (b) PTH-(1-34) (10(-6) M), human (h) PLP-(1-34) (hPLP-(1-34), 10(-6) M), isoproterenol (10(-4) M), and forskolin (10(-4) M). Although both intracellular and extracellular cAMP levels were stimulated approximately 1.5-2-fold by these agonists, intracellular concentrations of cAMP were substantially higher than extracellular concentrations. Peak increases with bPTH-(1-34) occurred after a 30-min incubation with the hormone 48 h after oocyte injection. bPTH-(1-34) caused a concentration-dependent augmentation of cAMP in injected oocytes, and the in vitro antagonist hPLP-(3-34) produced dose-dependent inhibition of both bPTH-(1-34)- and hPLP-(1-34)-stimulated cAMP accumulation. Specific binding of PTH to oocyte membranes was also demonstrated 48 h after oocyte injection with UMR 106 cell mRNA. Following size fractionation of isolated UMR 106 poly(A)+ RNA by sucrose density gradients, mRNA directing the expression of both PTH- and PLP-stimulated cAMP in oocytes appeared in the 3.5-4.9-kilobase fraction. These results demonstrate that adenylate cyclase-coupled osseous PTH and PLP receptors can be expressed after injection of naturally occurring mRNA into Xenopus oocytes, that PTH- and PLP-stimulated increases in cAMP concentrations can be detected in individual oocytes injected with bone cell-derived mRNA, that PTH and PLP appear to cross-react at a common receptor after injection of UMR 106 cell mRNA into oocytes, and that size selection of mRNA encoding the PTH and PLP receptors can be achieved by density gradient centrifugation. These studies, therefore, indicate the potential usefulness of the Xenopus oocyte system in expression cloning of PTH and PLP receptor cDNAs and illustrate the feasibility of employing this system to examine the biology of PTH and PLP receptors.  相似文献   

2.
3.
A direct radioligand binding technique utilizing a beta-adrenergic antagonist [3H]Dihydroalprenolol [( 3H]DHA) was employed in the identification and characterization of fetal palatal beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax 16 fmol/mg protein) with high affinity and an apparent equilibrium dissociation constant (KD) of 1.5 nM. Binding of [3H]DHA was displaced by the competitive beta-adrenergic antagonist propranolol in a concentration-dependent manner. Dissociation kinetic studies demonstrated almost complete reversibility of radioligand binding within 60 min. The functionality of these beta-adrenergic receptors was demonstrated by showing that fetal palatal mesenchymal cells responded to catecholamine agonists with dose-dependent accumulations of intracellular cAMP. This effect could be entirely blocked by the beta-antagonist, propranolol. The relative potency order of catecholamines in eliciting an elevation of cellular cAMP was characteristic of a beta 2-adrenergic receptor-mediated response: (-) isoproterenol greater than (-) epinephrine greater than (-) norepinephrine. In addition, this response was found to be stereospecific with (-) isoproterenol being significantly more potent than (+) isoproterenol. Both the [3H]DHA binding characteristics and the catecholamine sensitivity of fetal palatal tissue support the presence of adenylate cyclase-coupled beta-adrenergic receptors in the developing mammalian secondary palate.  相似文献   

4.
Desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocytes results in a 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of beta-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoprenaline- and dibutyryl cyclic AMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37 degrees C, pH 8.0. In both preparations alkaline phosphatase treatment significantly decreased desensitization of agonist-stimulated adenylate cyclase activity by 40-75% (P less than 0.05). Similar results were obtained after alkaline phosphatase treatment of membranes from isoprenaline- and dibutyryl cyclic AMP-desensitized duck erythrocytes. Moreover, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with 12-O-tetradecanoylphorbol 13-acetate returned agonist-stimulated adenylate cyclase activity to near control values. In all experiments, inclusion of 20 mM-sodium phosphate to inhibit alkaline phosphatase during treatment of membranes attenuated the enzyme's effect on agonist-stimulated adenylate cyclase activity. In addition, alkaline phosphatase treatment of membranes from control and isoprenaline-desensitized turkey erythrocytes increased the mobility of beta-adrenergic-receptor proteins, specifically photoaffinity-labelled with [125I]iodocyanopindolol-diazirine, on SDS/polyacrylamide-gel electrophoresis. The increased mobility of the beta-adrenergic-receptor proteins after alkaline phosphatase treatment of membranes was again inhibited by 20 mM-phosphate. These results provide additional evidence for a direct role for phosphorylation in desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocytes.  相似文献   

5.
1. Parathyroid hormone-induced down-regulation was studied in the osteosarcoma cell line UMR-106. 2. A maximal priming does of bPTH (1-84) down-regulated PTH-responsiveness to 40% of its initial value; bPTH (1-41) was less effective than bPTH (1-84), whereas bPTH (42-84) had no effect, alone or in combination with bPTH (1-41). 3. A tentative model for the function of different domains of parathyroid hormone in down-regulation is suggested.  相似文献   

6.
7.
Thyroid hormone receptors, isolated from rat liver nuclei, bind to purified DNA. By contrast, free triiodothyronine and plasma proteins which bind thyroid hormone do not associate with DNA. Thus, the nuclear localization of thyroid hormone in target tissues may be explained by the association of its receptors with DNA.  相似文献   

8.
The unique properties of agonist binding to the frog erythrocyte beta-adrenergic receptor include the existence of two affinity forms of the receptor. The proportion and relative affinity of these two states of the receptor for ligands varies with the intrinsic activity of the agonist and the presence of guanine nucleotides. The simplest model for hormone-receptor interactions which can explain and reproduce the experimental data involves the interaction of the receptor R with an additional membrane component X, leading to the agonist-promoted formation of a high affinity ternary complex HRX. Computer modeling of agonist binding data with a ternary complex model indicates that the model can fit the data with high accuracy under conditions where the ligand used is either a full or a partial agonist and where the system is altered by the addition of guanine nucleotide or after treatment with group-specific reagents, e.g. p-hydroxymercuribenzoate. The parameter estimates obtained indicate that the intrinsic activity of the agonist is correlated significantly with the affinity constant L of the component X for the binary complex HR. The major effect of adding guanine nucleotides is to destabilize the ternary complex HRX from which both the hormone H and the component X can dissociate. The modulatory role of nucleotides on the affinity of agonists for the receptor is consistent with the assumption that the component X is the guanine nucleotide binding site. The ternary complex model was also applied successfully to the turkey erythrocyte receptor system. The model provides a general scheme for the activation by agonists of adenylate cyclase-coupled receptor systems and also of other systems where the effector might be different.  相似文献   

9.
Phytohormones exert in responsive plant cells specific biochemical and physiological effects. It is a widely held view that phytohormones are first recognized by specific receptors which initiate the transduction of the hormonal signal. While hormone receptors are well studied in many eukaryotes ranging from yeast to man, we are lacking a detailed understanding of phytohormone receptors. Phytohormone binding proteins have been suspected to provide candidates for such receptors. In this review recent progress towards molecular analysis of such proteins and their genes will be summarized.  相似文献   

10.
(minus)-Alprenolol, a potent, competitive beta-adrenergic antagonist labeled to high specific activity with tritium (17 Ci per mmol), has been used to identify binding sites in frog erythrocyte membranes having many of the characteristics to be expected of the beta-adrenergic receptors which are linked to adenylate cyclase in these membranes. The chromatographic behavior and biological activity of the labeled and native drug were essentially identical. (minus)-Alprenolol and (minus)-[3-H]alprenolol both competitively antagonize isoproterenol stimulation of frog erythrocyte membrane adenylate cyclase with a KD OF 5 TO 10 NM. (minus)-[3-H]Alprenolol binding to sites in the frog erythrocyte membranes was studied by a centrifugal assay. At 37 degrees, equilibrium binding was established within 5 min and the half-time for dissociation of bound (minus)-[3-H]alprenolol was approximately 30 s. This rapid onset and dissociation of (minus)-[3-H]alprenolol binding was in good agreement with the rapid onset of action of beta-adrenergic agonists and antagonists on the frog erythrocyte adenylate cyclase. (minus)-[3-H]Alprenolol binding was saturable. There were 0.25 to 0.35 pmol of (minus)-[3-H]alprenolol binding sites per mg of protein corresponding to 1300 to 1800 binding sites per intact frog erythrocyte. The binding sites showed half-maximal saturation at 5.0 to 10 nM (minus)-[3-H]alprenolol, which is in good agreement with the KD for alprenolol antagonism of isoproterenol stimulation of adenylate cyclase. The (minus)-[3-H]alprenolol binding sites exhibited strict stereospecificity. (minus)-Stereoisomers of beta-adrenergic antagonists or agonists were approximately 2 orders of magnitude more potent than the (+)-stereoisomers in competing for the binding sites. Comparable stereospecificity was apparent when agonists and antagonists were tested for their ability to interact with the adenylate cyclase-coupled beta-adrenergic receptors in the membranes. Potency series of 11 agonists and 13 antagonists for inhibition of binding and interaction with adenylate cyclase were identical and were characteristic of a beta2-adrenergic receptor. A variety of nonphysiologically active compounds containing a catechol moiety as well as several metabolites and cholinergic agents did not inhibit (minus)-[3-H]alprenolol binding or interact significantly as agonists or antagonists with the adenylate cyclase. The (minus)-[3-H]alprenolol binding sites studied appear to be equivalent to the beta-adrenergic receptor binding sites in the frog erythrocyte membranes.  相似文献   

11.
P  l Wiik 《Regulatory peptides》1988,20(4):323-333
The effect of agonists on VIP receptor regulation has been investigated in mononuclear human blood leucocytes. VIP receptor number and affinity, as well as VIP-stimulated cyclic AMP accumulation were measured after pretreatment with VIP, PHM-27 or secretin. Pretreatment for 30 min with 0.1 μM VIP caused 28% (S.E.M. = 15) reduction in specific binding, and 52% (S.E.M. = 12) reduction in cyclic AMP accumulation, while 3 h of pretreatment caused 59% (S.E.M. = 10) and 68% (S.E.M. = 12) reduction. Only VIP concentrations at the nanomolar level and higher were shown to have any effect. Bmax of the high-affinity receptor was reduced by 66% (S.E.M. = 8) after 30 min, and 95% (S.E.M. = 3) after 3 h of exposure to 0.1 μM VIP. No significant change was observed in receptor affinity, in Bmax of the low-affinity receptor, in ED50, or in ED100 of VIP-stimulated cyclic AMP accumulation. Pretreatment with PHM-27 (0.1 μM, 3 h) caused 24% reduction in [125I]VIP binding and 25% reduction in cyclic AMP accumulation, while no effect was detected after pretreatment with secretin (0.1 μM, 3 h).  相似文献   

12.
The binding of thyroid hormone receptors to DNA   总被引:1,自引:0,他引:1  
The behaviour of tri-iodothyronine (T3)- and thyroxine (T4)-receptor complexes when bound to native DNA-cellulose is reported. Equal and large proportions of both T3- and T4-receptor complexes bind to DNA but although T3-receptor complexes are 99% recoverable by 0.5 M NaCl buffer elution, only 60-70% of the T4-receptor complexes are regained. The balance appears as free T4, apparently released as the T4-receptor complexes bind to the DNA whilst the corresponding receptor remains bound. This effect is independent of T4-receptor complex/DNA ratio up to ca. 4 fmol/micrograms DNA, of the presence of an equal amount of unoccupied receptor and of an eight-fold concentration range of both T4-receptor complex and DNA at a fixed ratio, in the cellulose matrix. Pre-formed receptor-DNA material, likewise, only accepts some 60% of the expected quantity of T4 whereas the capacity for T3 appears to be similar to that of free receptors.  相似文献   

13.
Adenylate cyclase in NG108-15 (neuroblastoma X glioma hybrid) cells is responsive to both stimulatory and inhibitory ligands. Bordetella pertussis toxin (PT) catalyzes the ADP-ribosylation of a 41,000-Da peptide believed to be a subunit of the putative guanyl nucleotide-binding protein (Gi) involved in cyclase inhibition and abolishes inhibitory effects of opiate agonists. In studying the effects of PT on opiate receptors, we found that [3H]enkephalinamide binding was reduced by approximately 90% in membranes prepared from cells incubated with PT compared to control membranes. Agonist affinity, assessed by enkephalinamide competition for [3H]diprenorphine-binding sites, was markedly reduced in cells incubated with PT. Furthermore, inhibition by guanylylimidodiphosphate of ligand binding to opiate receptors was reduced following treatment with PT. The number of opiate receptors assessed by [3H]diprenorphine binding was unaltered by PT. These data are consistent with the hypothesis that PT-catalyzed ADP-ribosylation impairs the interaction of Gi with the inhibitory receptor-ligand complex, effectively uncoupling the inhibitory receptor from Gi and the cyclase catalytic unit.  相似文献   

14.
M Henrich  H M Piper  J Schrader 《Life sciences》1987,41(21):2381-2388
Isolated metabolically stable cardiomyocytes from adult rats and mongrel dogs were used to characterize the mechanism underlying the antiadrenergic effect of adenosine. In a system not affected by cellular heterogeneity, isoproterenol (3 x 10(-9) M - 10(-5) M) in the presence of adenosine deaminase (5U/ml) dose dependently increased cellular cAMP (5-80 pmol/mg). The effect of isoproterenol (0.1 microM) was inhibited by various adenosine derivatives, the rank order of potency being in the rat: (-)-N6-(R-phenyl-isopropyl)-adenosine (R-PIA) greater than 5'-N-ethylcarboxamidoadenosine (NECA) greater than S-PIA, and in the dog NECA greater than R-PIA greater than S-PIA. The cAMP increase induced by forskolin (1 microM) was attenuated in the rat by R-PIA. 8-phenyltheophylline (3 microM) antagonized the effect of R-PIA on isoproterenol-stimulated cAMP formation. Basal cAMP content was not influenced by R-PIA or NECA. Omission of adenosine deaminase from the incubation medium attenuated the isoproterenol-induced cAMP increase in the rat by about 30%. Our findings provide evidence for the presence of adenylate cyclase-coupled A1-adenosine receptors on cardiomyocytes which may mediate the antiadrenergic effect of adenosine in the heart.  相似文献   

15.
Recent evidence suggests that the molecular interactions of agonists with beta-adrenergic receptors differ from those of antagonists. Most of this evidence has come from studies of agonist inhibition of radiolabeled antagonist binding. We have examined agonist binding directly in rat lung membranes using radiolabeled hydroxybenzylisoproterenol (3H-HBI). Specific binding of 3H-HBI was stereoselective and was inhibited by catecholamines with a potency order characteristic of beta 2-adrenergic receptors. Gpp(NH)p increased the rates of association and dissociation of 3H-HBI from the receptor. In the absence of Gpp(NH)p, Scatchard plots were curvilinear suggesting a complex interaction of the agonist with the receptor. The total number of 3H-HBI binding sites was similar to that of 125I-IHYP binding sites. In the presence of increasing concentrations of Gpp(NH)p, the affinity of 3H-HBI was decreased and Scatchard plots became linear. Sodium chloride mimicked the effect of Gpp(NH)p in lowering the affinity of the receptor for 3H-HBI. Magnesium chloride had the opposite effect in that it promoted high affinity binding. The effect of sodium chloride was largely overcome by the presence of magnesium chloride.  相似文献   

16.
17.
18.
Neomycin, an inositol-phospholipid-binding aminoglycoside antibiotic, is known to interfere with signal transduction mechanisms involving phospholipase C as effector enzyme. In this study, we report that neomycin can also markedly influence agonist binding of G-protein-coupled receptors. In membranes of differentiated human leukemia cells (HL 60 cells), neomycin (0.1-10 mM) was found to induce high-affinity binding of the chemotactic tripeptide, N-formyl-methionylleucylphenylalanine (fMet-Leu-Phe), to its receptor sites in a manner similar to magnesium. Gentamycin and streptomycin, two other aminoglycoside antibiotics, were as potent and as effective as neomycin or magnesium in inducing high-affinity agonist receptor binding. Pretreatment of the cells with pertussis toxin reduced the effects of magnesium and neomycin on agonist receptor binding likewise. In contrast, magnesium but not neomycin largely enhanced the potency of guanine nucleotides, particularly of GTP and its analog, guanosine-5'-O-(3-thiotriphosphate), to reduce fMet-Leu-Phe receptor binding, while maximal inhibition of agonist receptor binding by guanine nucleotides was identical with magnesium and neomycin. Furthermore, neomycin could not replace magnesium in providing stimulation of HL 60 membrane high-affinity GTPase by fMet-Leu-Phe. In close agreement to these findings on the pertussis-toxin-sensitive Gi-protein-coupled formyl peptide receptors, neomycin in a manner similar to magnesium induced high-affinity agonist binding of Gs-protein-coupled beta-adrenoceptors. Similar to formyl peptide receptor binding, high-affinity binding of isoproterenol to beta-adrenoceptors in guinea pig lung membranes induced by magnesium and neomycin was inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate), to a similar maximal extent but with an about 100-fold higher potency in the presence of magnesium than in the presence of neomycin. The data presented thus indicate that neomycin and other aminoglycoside antibiotics can mimic the action of magnesium (or other divalent cations) in inducing high-affinity agonist binding of Gi- and Gs-protein-coupled receptors, but not in inducing subsequent G-protein activation by guanosine triphosphates. The data, furthermore, suggest that neomycin by this selective action will be a powerful tool to dissect the multiple sites of magnesium's action in the agonist receptor-G-protein interaction.  相似文献   

19.
20.
The (2S,4R)- and (2S,4S)-4-hydroxyglutamates activate cloned mGlu(1a), mGlu(2), and mGlu(8a) receptors with different potencies. Best results were obtained with the (2S,4S) isomer being almost as potent as glutamate on mGlu(1a)R and mGlu(8a)R. Data are interpreted on the basis of the binding site model and X-ray structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号