首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of net photosynthesis (P N) and transpiration (E), and leaf temperature (TL) of maintenance leaves of tea under plucking were affected by photosynthetic photon flux densities (PPFD) of 200–2 200 μmol m−2 s−1. P N gradually increased with the increase of PPFD from 200 to 1 200 μmol m−2 s−1 and thereafter sharply declined. Maximum P N was 13.95 μmol m−2 s−1 at 1 200 μmol m−2 s−1 PPFD. There was no significant variation of P N among PPFD at 1 400–1 800 μmol m−2 s−1. Significant drop of P N occurred at 2 000 μmol m−2 s−1. PPFD at 2 200 μmol m−2 s−1 reduced photosynthesis to 6.92 μmol m−2 s−1. PPFD had a strong correlation with TL and E. Both TL and E linearly increased from 200 to 2 200 μmol m−2 s−1 PPFD. TL and E were highly correlated. The optimum TL for maximum P N was 26.0 °C after which P N declined significantly. E had a positive correlation with P N.  相似文献   

2.
Goldspur apple (Malus pumila cv. Goldspur) is one of the main fruit trees planted in semiarid loess hilly areas. The photosynthetic efficiency in leaves of eight-year-old trees were studied under different soil water conditions with a Li-6400 portable photosynthesis system and a Li-Cor1600 portable steady state porometer in order to explore the effects of soil water stress on photosynthesis and the suitable soil water content (SWC) for water-saving irrigation of apple orchards. The results showed that the leaf net photosynthetic rate (P N), transpiration rate (E), water-use efficiency (WUE), stomatal conductance (g s), intercellular CO2 concentration (C i), and stomatal limiting value (L s) displayed different threshold responses to soil water variation. When SWC was within a range of about 60%–86% of field capacity (FC), P N and E were maintained in a relative steady state. At an elevated level but below 60% of FC, both P N and E decreased evidently with decreasing soil moisture. The SWC needed to support WUE in a relatively steady state and at a high level was in the range of about 50%–71% of FC. When SWC was less than 48% of FC, g s and L s declined with decreasing soil moisture, while C i increased rapidly. Based on the analysis of the stomatal limitation of photosynthesis using two criteria (C i and L s) suggested by Farquhar and Sharkey, it was implied that the predominant cause of restricting P N had changed from stomatal limitation to nonstomatal one under severe water stress. In terms of water-saving irrigation for enhancing water-use efficiency, it was concluded that in semiarid loess hilly areas, the suitable range of SWC for water-saving irrigation in goldspur apple orchards is in the range of about 50%–71% of FC, and the most severe degree of soil water stress tolerated for photosynthesis is about 48% of FC.  相似文献   

3.
Long-term cryopreservation of islets of Langerhans would be advantageous to a clinical islet transplantation program. Fundamental cryobiology utilizes knowledge of basic biophysical characteristics to increase the understanding of the preservation process and possibly increase survival rate. In this study several of these previously unreported characteristics have been determined for individual islet cells isolated from Golden hamster islets. Using an electronic particle counting device and a temperature control apparatus, dynamic volumetric response of individual islet cells to anisosmotic challenges of 1.5 M dimethyl sulfoxide (DMSO) and 1.5 M ethylene glycol (EG) were recorded at four temperatures (8, 22, 28, and 37°C). The resulting curves were fitted using Kedem and Katchalsky equations which describe water flux and cryoprotectant agent (CPA) flux based on hydraulic conductivity (Lp), CPA permeability (Ps), and reflection coefficient (?) for the membrane. For Golden hamster islet cells,Lp,Ps, and ? for DMSO at 22°C were found to be 0.23 ± 0.06 μm/min/atm, 0.79 ± 0.32 × 10−3cm/min, and 0.55 ± 0.37 (n= 11) (mean ± SD), respectively. For EG at 22°C,Lpequaled 0.23 ± 0.06 μm/min/atm,Psequaled 0.63 ± 0.20 × 10−3cm/min, and ? was 0.75 ± 0.17 (n= 9). Arrhenius plots (lnLpor lnPsversus 1/temperature (K)) were created by adding the data from the other three temperatures and the resulting linear regression yielded correlation coefficients (r) of 0.99 for all four plots (LpandPsfor both CPAs). Activation energies (Ea) ofLpandPswere calculated from the slopes of the regressions. The values for DMSO were found to be 12.43 and 18.34 kcal/mol forLpandPs(four temperatures, totaln= 52), respectively. For EG,EaofLpwas 11.69 kcal/mol andEaofPswas 20.35 kcal/mol (four temperatures, totaln= 58).  相似文献   

4.
Net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (C i), transpiration rate (E), water use efficiency (WUE), and stomatal limitation (Ls) of Populus euphratica grown at different groundwater depths in the arid region were measured. g s of the trees with groundwater depth at 4.74 m (D4) and 5.82 m (D5) were lower and a little higher than that at 3.82 m (D3), respectively. Compared with C i and Ls of the D3 trees, C i decreased and Ls increased at 4.74 m, however, Ci increased and Ls decreased at D5. Hence photosynthetic reduction of P. euphratica was attributed to either stomatal closure or non-stomatal factors depending on the groundwater depths in the plant locations. P N of the D3 trees was significantly higher than those at D4 or D5. The trees of D4 and D5 did not show a significant difference in their P N, indicating that there are mechanisms of P. euphratica tolerance to mild and moderate drought stress.  相似文献   

5.
Summary Previous work has suggested that the presence of P32 in fertilizers inhibits the uptake of the applied phosphate from the soil by plants, and also that if the applied phosphate is not incorporated uniformly in the soil there will be preferential uptake from regions of low specific activity. This made it desirable to determine the effect of P32-level on phosphate uptake and the determination ofL-values in pot experiments in which the labelled phosphate source is added as discrete particles of the phosphate form of an anion-exchange resin.Increasing the level of P32 from 0.05 to 1.25 mo per gram of phosphorus in the added phosphate did not have a significant effect on the fresh weight, dry weight or total phosphorus uptake of the ryegrass crop. The measuredL-value showed a significant increase, about 15 per cent for a five-fold increase in P32 level, on each of the four soil types used, as would be expected if P32 depressed the uptake of labelled fertilizer phosphate.Although a significant effect of P32 was observed this does not invalidate a comparison of soils with respect toL-value.  相似文献   

6.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

7.
Summary The polychaeteOphryotrocha puerilis is a male-to-female sex-changer, whereasO. labronica has separate sexes throughout life. In other respects the two species are remarkably similar: they occur in the same habitat, they look the same, they eat the same things, and in someO. labronica populations sex-changers can actually be found. The size-advantage hypothesis predicts that inO. puerilis males should not benefit reproductively from a size increase as much as males inO. labronica: henceO. puerilis but notO. labronica males should change to the female sex at a certain size. I experimentally compared reproductive success at different body sizes between the two species. In isolated male-female pairs reproductive rate increased significantly with female body size but not with male body size, and this pattern was the same in both species. Hence male fecundityper se cannot account for the difference in reproductive type between the two species. In other experiments I investigated if larger males gained access to more females because they were superior competitors for mates or were preferred by females, compared to small males. InO. puerilis the combined effect of these two factors conferred no size advantage to the males, whereas inO. labronica larger males acquired more females than did smaller males. Hence interactions among males and females, in accordance with the size-advantage hypothesis, can explain why sex change is maintained inO. puerilis, and why separate sexes are maintained inO. labronica.  相似文献   

8.
Stable oxygen isotope ratio of leaf water (δ18OL) yields valuable information on many aspects of plant–environment interactions. However, current understanding of the mechanistic controls on δ18OL does not provide complete characterization of effective path length (L) of the Péclet effect, – a key component of the leaf water model. In this study, we collected diurnal and seasonal series of leaf water enrichment and estimated L in six field‐grown angiosperm and gymnosperm tree species. Our results suggest a pivotal role of leaf transpiration rate (E) in driving both within‐ and across‐species variations in L. Our observation of the common presence of an inverse scaling of L with E in the different species therefore cautions against (1) the conventional treatment of L as a species‐specific constant in leaf water or cellulose isotope (δ18Op) modelling; and (2) the use of δ18Op as a proxy for gs or E under low E conditions. Further, we show that incorporation of a multi‐species LE scaling into the leaf water model has the potential to both improve the prediction accuracy and simplify parameterization of the model when compared with the conventional approach. This has important implications for future modelling of oxygen isotope ratios.  相似文献   

9.
Over the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (ΨS), leaf water potential (ΨL), and stomatal conductance (gs), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of ΨL and gs across biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (AL) on the apparent sensitivities of ΨL and gs to drought. After validating the model with tree‐ and ecosystem‐scale data, we find that within a site, isohydricity is a strong predictor of limitations to stomatal function, though variation in VPD and leaf area, among other factors, can challenge its diagnosis. Across sites, the theory predicts that the degree of isohydricity is a good predictor of the sensitivity of gs to declining soil water in the absence of confounding effects from other drivers. However, if VPD effects are significant, they alone are sufficient to decouple the dynamics of ΨL and gs entirely. We conclude with a set of practical recommendations for future applications of the isohydricity framework within and across sites.  相似文献   

10.
Net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) declined from upper leaves to the lower ones during dry and rainy seasons, indicating that long-term carbon budget should take into account P N variations for different leaf types. Relatively greater P N in the dry season suggested that this species is more able to maintain higher P N under drought, but the relatively higher E in the dry season might reduce water use efficiency (P N/E) for the species. Significant correlations between P N and g s indicated that g s may be the critical factor for P N variability in the desert region.  相似文献   

11.
Leaf stomatal conductance (g s), transpiration rate (E), and light-saturated net photosynthetic rate (P Nmax) at three developmental stages (tillering stage, jointing-booting stage, and milking stage) and leaf total nitrogen concentration (LTNC) and δ13C value at milking stage were measured for a conventional rice line (Minghui 63) and its corresponding Bacillus thuringiensis (Bt)-gene [cry1A (b and c)] introduced line (Bt line) under three fertilizer levels. Compared to conventional line, Bt line showed lower g s, which was associated with lower P Nmax and E, but instantaneous water-use efficiency (WUE), measured as the ratio of P Nmax to E, was higher in the Bt line than in the conventional line, particularly in the jointing-booting stage. However, δ13C values were not significantly different across treatments, suggesting that intrinsic water-use efficiency (WUEin) might be indistinguishable between Bt and conventional lines. LTNC was higher but P Nmax was lower in Bt line compared to conventional line, resulting in significantly lower photosynthetic nitrogen-use efficiency (PNUE). This might result from the additional cost of producing Bt protein in the Bt line due to the effect of competing nitrogen with photosynthetic machinery. Bt-gene introduction and expression does not significantly change WUEin but may significantly decrease leaf PNUE. Thus we suggest that Bt rice should be carefully examined in relation to environmental risks (e.g. water-body pollution) before planting commercially.  相似文献   

12.
Net photosynthetic rate (P N), transpiration rate (E), water use efficiency (WUE), stomatal conductance (g s), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low gs. Unlike S. oblata, the maximal photosynthetic rate (P max) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower P N together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

13.
Summary In the presence of protein, Hansenula polymorpha cultivation medium exhibits a maximum volumetric mass transfer coefficient, kLa, as function of the employed antifoam agents (soy oil and Desmophen 3600). With diminishing superficial gas velocity this maximum disappeas.Symbols EG Relative gas holdup - kLa Volumetric mass transfer coefficient (s–1) - wSL Superficial liquid velocity (cm s–1) - wSG Superficial gas velocity (cm s–1)  相似文献   

14.
Yu  Orang  Goudriaan  J.  Wang  Tian-Duo 《Photosynthetica》2001,39(1):43-51
A mathematical model for photoinhibition of leaf photosynthesis was developed by formalising the assumptions that (1) the rate of photoinhibition is proportional to irradiance; and (2) the rate of recovery, derived from the formulae for a pseudo first-order process, is proportional to the extent of inhibition. The photoinhibition model to calculate initial photo yield is integrated into a photosynthesis-stomatal conductance (g s) model that combines net photosynthetic rate (P N), transpiration rate (E), and g s, and also the leaf energy balance. The model was run to simulate the diurnal courses of P N, E, g s, photochemical efficiency, i.e., ratio of intercellular CO2 concentration and CO2 concentration over leaf surface (C i/C s), and leaf temperature (T 1) under different irradiances, air temperature, and humidity separately with fixed time courses of others. When midday depression occurred under high temperature, g s decreased the most and E the least. The duration of midday depression of g s was the longest and that in E the shortest. E increased with increasing vapour pressure deficit (VPD) initially, but when VPD exceeded a certain value, it decreased with increasing VPD; this was caused by a rapid decrease in g s. When air temperature exceeded a certain value, an increase in solar irradiance raised T 1 and the degree of midday depression. High solar radiation caused large decrease in initial photon efficiency (). P N, E, and g s showed reasonable decreases under conditions causing photoinhibition compared with non-photoinhibition condition under high irradiance. The T 1 under photoinhibition was higher than that under non-photoinhibition conditions, which was evident under high solar irradiance around noon. The decrease in C i/C s at midday implies that stomatal closure is a factor causing midday depression of photosynthesis.  相似文献   

15.
Independent short-term effects of photosynthetic photon flux density (PPFD) of 50–400 μmol m−2 s−1, external CO2 concentration (C a) of 85–850 cm3 m−3, and vapor pressure deficit (VPD) of 0.9–2.2 kPa on net photosynthetic rate (P N), stomatal conductance (g s), leaf internal CO2 concentration (C i), and transpiration rates (E) were investigated in three cacao genotypes. In all these genotypes, increasing PPFD from 50 to 400 μmol m−2 s−1 increased P N by about 50 %, but further increases in PPFD up to 1 500 μmol m−2 s−1 had no effect on P N. Increasing C a significantly increased P N and C i while g s and E decreased more strongly than in most trees that have been studied. In all genotypes, increasing VPD reduced P N, but the slight decrease in g s and the slight increase in C i with increasing VPD were non-significant. Increasing VPD significantly increased E and this may have caused the reduction in P N. The unusually small response of g s to VPD could limit the ability of cacao to grow where VPD is high. There were no significant differences in gas exchange characteristics (g s, C i, E) among the three cacao genotypes under any measurement conditions.  相似文献   

16.
Stem CO2 efflux (E s) has been estimated from a temperature-related equation, but sap flux often affects measurements of E s, which leads to misunderstanding real stem respiration. In order to observe the relationship between E s and stem temperature and to analyze the effect of sap velocity on E s, stem temperature, E s and sap flux were measured from a subtropical Schima superba plantation in South China on three trees for consecutive 3 days in July and October 2009. Stem temperature, E s and sap velocity were significantly higher in July than in October. Stem temperature could explain 17–41 and 54–75% variations of E s in July and October, respectively. A negative relationship between E s and stem temperature was found during 1800–2300 hours in July. The daytime E s was 9.2, 4.3 and 2.4% higher than the predicted for three trees in July, and this occurred only on Tree 1 in October. Sap velocity was positively correlated with E s for three trees in July, and the increase of E s with the increase of sap velocity was only observed on Tree 1 in October. These results demonstrated that the occurrence of sap flux could account for the increase of daytime E s, and the effect of sap velocity on E s varied with the seasons from the S. superba stem.  相似文献   

17.
Water use and hydraulic architecture were studied in the coffee (Coffea arabica) cultivars San Ramon, Yellow Caturra and Typica growing in the field under similar environmental conditions. The cultivars differed in growth habit, crown architecture, basal sapwood area and total leaf surface area. Transpiration per unit leaf area (E), stomatal conductance (g s), crown conductance (g c), total hydraulic conductance of the soil/leaf pathway (G t) and the stomatal decoupling coefficient, omega (Ω) (Jarvis and McNaughton 1986) were assessed over a range of soil moisture and during partial defoliation treatments. The relationship between sap flow and sapwood area was linear and appeared to be similar for the three cultivars. Variation in g c, E, and G t of intact plants and leaf area-specific hydraulic conductivity (k l) of excised lateral branches was negatively correlated with variation in the ratio of leaf area to sapwood area. Transpiration, g c, and g s were positively correlated with G t. Transpiration and G t varied with total leaf area and were greatest at intermediate values (10 m2) of leaf area. Omega was greatest in Yellow Caturra, the cultivar with the greatest leaf area and a dense crown, and was smallest in Typica, the cultivar with an open crown. Differences in omega were attributable primarily to differences in leaf boundary layer conductance among the cultivars. Plants of each cultivar that were 40% defoliated maintained sap flows comparable to pretreatment plants, but expected compensatory increases in g s were not consistently observed. Despite their contrasting crown morphologies and hydraulic architecture, the three cultivars shared common relationships between water use and hydraulic architectural traits. Received: 17 February 1999 / Accepted: 28 July 1999  相似文献   

18.
The mechanism of the primary electron transfer (ET) process in the photosynthetic reaction center (PRC) of Rhodobacter sphaeroides has been studied with quantum chemistry method of ab initio density functional theory (DFT) (B3LYP/6-31G) based on the optimized X-ray crystallographic structure. The calculation was carried out on different structural levels. The electronic structure of pigment molecules was first studied, and then the influence of the neighboring protein was taken into account at three approximation levels: (a) the surrounding proteins were treated as a homogeneous medium with a uniform dielectric constant (SCRF); (b) both the influence of axial coordination of His to the special pair P and ABChl as, and the hydrogen bonds between related residues and P and also BPhas were included; and (c) the influence of the electronic structure of the protein subunit chains as a whole was studied. The results suggest that: (1) according to the composition of the HOMO and LUMO of P, there might be a charge-separated state of (BChlL +BChlM ) for the excited state of P; (2) to treat the protein surroundings as a homogeneous medium is not sufficient. Different interactions between pigment molecules and related residues play different roles in the ET process; (3) the axial coordination of His to P raises the E LUMO of P greatly, and it is very important for the ET process to occur in the PRC of wild-type bacterium; the axial coordination of His to ABChl as also raises their E LUMO significantly; (4) the hydrogen-bonds between amino acid residues and P and also BPh as depress the E LUMO of the pigment molecules to some extent, which makes the E LUMO of P lower than those of ABChlas, and the E LUMO of BPh a L lower than that of BPh a M. Consequently, the ET process from P to BPh a L does not, according to our calculation model, occur via ABChl a L. The possibility of the ET pathway from P to BPh a L via ABChl a L was discussed; (5) the frontier orbitals of protein subunit chains L and M are localized at the random coil area and the α–helix areas, respectively. Results mentioned above support the fact that the ET process proceeds in favourable circumstances along the branch L. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
为探究岩溶植物的光合生理适应机制,采用Li-6400XT便携式光合作用测量系统,对广西平果市岩溶区8种适生植物的叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、水分利用效率(WUE)和气孔限制值(Ls)等光合特征参数进行了测定分析。结果表明:(1)6个光合特征参数在种内和种间均存在不同程度的变异,并且种内变异均大于种间变异。(2)Gs和Tr的变化主要来源于种间变异(46.72%~49.76%),而Pn、Ci、WUE和Ls变化主要来源于种内变异(48.66%~64.50%)。在生活型水平上,Pn、Gs和Tr的种内变异表现为常绿植物小于落叶植物,而Ci、WUE和Ls则相反。(3)各参数的种间变异均表现为落叶植...  相似文献   

20.
In a single compartment quantal response model, besides the input and release processes, an inspection process, assumed to be independent of the input and release processes, is considered. Each time when a release occurs, we assume the amount of release is randomly proportional to the amount present and the proportional rates form a sequence of independent and identically distributed random variables with support on [0, 1]. The input policy we consider is a modification of (s, S) input policy in the inventory model. More precisely, let 0 ≦s2s1sS, if after a release, the amount of the drug in subject's body is less than a level s2 which is small enough, then there will be an input immediately with probability 1 — p and no more inputs thereafter with probability p, also there will be an input immediately if the dose level is in the interval [s2, s1). If the dose level is in the interval [s1, s) there will be no input unless the inspector arrives. On the other hand, if the dose level is greater than or equal to s, then there will be no input. We consider a stochastic model as described above, and obtain the expressions for some quantities of interest. A Monte Carlo study has also been carried out to demonstrate some behaviors of our quantal response process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号