首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetry of tyrosyl-tRNA synthetase in solution   总被引:2,自引:0,他引:2  
W H Ward  A R Fersht 《Biochemistry》1988,27(3):1041-1049
The tyrosyl-tRNA synthetase from Bacillus stearothermophilus crystallizes as a symmetrical dimer with each subunit having a complete active site. The enzyme-substrate complexes, however, are known to be asymmetrical in solution because the enzyme exhibits half-of-the-sites activity by binding tightly only 1 mol of tyrosine or 1 mol of tyrosyl adenylate per mole of dimer. Evidence is now presented that the unligated enzyme is also asymmetrical in solution. Symmetry was investigated by construction of heterodimers containing one full-length subunit and one truncated subunit, allowing the introduction of different mutations into each monomer. Each dimer is active at only one site, but the site used is randomly distributed between the subunits. Each heterodimer thus consists of two equal populations, one activating tyrosine at a full-length subunit and the other at the truncated subunit. No detectable interconversion is found between active and inactive sites over several minutes either in the absence of substrates or when the enzyme is turning over in the steady state. Kinetic evidence implies that wild-type enzyme is inherently asymmetrical even in the absence of substrate.  相似文献   

2.
Synthesis of cysteinyl-tRNA(Cys) in methanogenic archaea proceeds by a two-step pathway in which tRNA(Cys) is first aminoacylated with phosphoserine by phosphoseryl-tRNA synthetase (SepRS). Characterization of SepRS from the mesophile Methanosarcina mazei by gel filtration and nondenaturing mass spectrometry shows that the native enzyme exists as an alpha4 tetramer when expressed at high levels in Escherichia coli. However, active site titrations monitored by ATP/PP(i) burst kinetics, together with analysis of tRNA binding stoichiometry by fluorescence spectroscopy, show that the tetrameric enzyme binds two tRNAs and that only two of the four chemically equivalent subunits catalyze formation of phosphoseryl adenylate. Therefore, the phenomenon of half-of-the-sites activity, previously described for synthesis of 1 mol of tyrosyl adenylate by the dimeric class I tyrosyl-tRNA synthetase, operates as well in this homotetrameric class II tRNA synthetase. Analysis of cognate and noncognate reactions by ATP/PP(i) and aminoacylation kinetics strongly suggests that SepRS is able to discriminate against the noncognate amino acids glutamate, serine, and phosphothreonine without the need for a separate hydrolytic editing site. tRNA(Cys) binding to SepRS also enhances the capacity of the enzyme to discriminate among amino acids, indicating the existence of functional connectivity between the tRNA and amino acid binding sites of the enzyme.  相似文献   

3.
The symmetrical dimer structure of tryptophanyl-tRNA synthetase is similar to that of tyrosyl-tRNA synthetase whose binding behavior and structural details have been elucidated in detail. The structure of both subunits after forming the intermediate tryptophanyl-AMP has important implications for the binding of the cognate tRNA(Trp). Single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase have been constructed and expressed and used to probe structural changes in different domains of the enzyme in both subunits. Substrate titrations using the Trp analogues 4-fluorotryptophan and 7-azatryptophan in the presence of ATP to form the corresponding aminoacyl-adenylate reveal significant structural changes occurring throughout the active subunit in regions not confined to the active site. Changes in environment around the specific Trp residues were monitored using UV absorbance and steady-state fluorescence measurements. When titrated with 4-fluorotryptophan, both Trp 91 and Trp 290 fluorescence is quenched (49 and 22%, respectively) when one subunit has formed Trp-AMP. The fluorescence of Trp 48 is enhanced 19%. No further change in signal was observed after a 1:1 dimer/L-4FW-AMP complex ratio had been established. Using an anion-exchange filter binding assay with radiolabeled l-Trp as a substrate, binding to only one subunit was observed under nonsaturating conditions. This agrees with the results of the assay using 7-azatryptophan as a substrate. The observed changes extend to the unfilled subunit where a similar structure is believed to form after one subunit has formed tryptophan-AMP. Movement in the regions of the enzyme containing Trp 290 and Trp 91 suggests a mechanism for cross-subunit communication involving the helical backbone and dimer interface containing these two residues.  相似文献   

4.
An auxiliary tryptophanyl tRNA synthetase (drTrpRS II) that interacts with nitric-oxide synthase in the radiation-resistant bacterium Deinococcus radiodurans charges tRNA with tryptophan and 4-nitrotryptophan, a specific nitration product of nitric-oxide synthase. Crystal structures of drTrpRS II, empty of ligands or bound to either Trp or ATP, reveal that drTrpRS II has an overall structure similar to standard bacterial TrpRSs but undergoes smaller amplitude motions of the helical tRNA anti-codon binding (TAB) domain on binding substrates. TAB domain loop conformations that more closely resemble those of human TrpRS than those of Bacillus stearothermophilus TrpRS (bsTrpRS) indicate different modes of tRNA recognition by subclasses of bacterial TrpRSs. A compact state of drTrpRS II binds ATP, from which only minimal TAB domain movement is necessary to bring nucleotide in contact with Trp. However, the signature KMSKS loop of class I synthetases does not completely engage the ATP phosphates, and the adenine ring is not well ordered in the absence of Trp. Thus, progression of the KMSKS loop to a high energy conformation that stages acyl-adenylation requires binding of both substrates. In an asymmetric drTrpRS II dimer, the closed subunit binds ATP, whereas the open subunit binds Trp. A crystallographically symmetric dimer binds no ligands. Half-site reactivity for Trp binding is confirmed by thermodynamic measurements and explained by an asymmetric shift of the dimer interface toward the occupied active site. Upon Trp binding, Asp68 propagates structural changes between subunits by switching its hydrogen bonding partner from dimer interface residue Tyr139 to active site residue Arg30. Since TrpRS IIs are resistant to inhibitors of standard TrpRSs, and pathogens contain drTrpRS II homologs, the structure of drTrpRS II provides a framework for the design of potentially useful antibiotics.  相似文献   

5.
We previously proposed that the dimeric cytochrome bc1 complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc1 monomers (Covian, R., Kleinschroth, T., Ludwig, B., and Trumpower, B. L. (2007) J. Biol. Chem. 282, 22289–22297). Here, we demonstrate the previously proposed half-of-the-sites reactivity and intermonomeric electron transfer by characterizing the kinetics of ubiquinol oxidation in the dimeric bc1 complex from Paracoccus denitrificans that contains an inactivating Y147S mutation in one or both cytochrome b subunits. The enzyme with a Y147S mutation in one cytochrome b subunit was catalytically fully active, whereas the activity of the enzyme with a Y147S mutation in both cytochrome b subunits was only 10–16% of that of the enzyme with fully wild-type or heterodimeric cytochrome b subunits. Enzyme with one inactive cytochrome b subunit was also indistinguishable from the dimer with two wild-type cytochrome b subunits in rate and extent of reduction of cytochromes b and c1 by ubiquinol under pre-steady-state conditions in the presence of antimycin. However, the enzyme with only one mutated cytochrome b subunit did not show the stimulation in the steady-state rate that was observed in the wild-type dimeric enzyme at low concentrations of antimycin, confirming that the half-of-the-sites reactivity for ubiquinol oxidation can be regulated in the wild-type dimer by binding of inhibitor to one ubiquinone reduction site.  相似文献   

6.
A refinement of the protonmotive Q cycle mechanism is proposed in which oxidation of ubiquinol is a concerted reaction and occurs by an alternating, half-of-the-sites mechanism. A concerted mechanism of ubiquinol oxidation is inferred from the finding that there is reciprocal control between the high potential and low potential redox components involved in ubiquinol oxidation. The potential of the Rieske iron-sulfur protein controls the rate of reduction of the b cytochromes, and the potential of the b cytochromes controls the rate of reduction of the Rieske protein and cytochrome c(1). A concerted mechanism of ubiquinol oxidation reconciles the findings that the ubiquinol-cytochrome c reductase kinetics of the bc(1) complex include both a pH dependence and a dependence on Rieske iron-sulfur protein midpoint potential.An alternating, half-of-the-sites mechanism for ubiquinol oxidation is inferred from the finding that some inhibitory analogs of ubiquinol that block ubiquinol oxidation by binding to the ubiquinol oxidation site in the bc(1) complex inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex. One molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme, and the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. An alternating, half-of-the-sites mechanism implies that, at least under some conditions, only half of the sites in the dimeric enzyme are reactive at any one time. This provides a raison d'être for the dimeric structure of the enzyme, in that bc(1) activity may be regulated and capable of switching between a half-of-the-sites active and a fully active enzyme.  相似文献   

7.
The low temperature crystal structure of the ternary complex of Thermus thermophilus seryl-tRNA synthetase with tRNA(Ser) (GGA) and a non-hydrolysable seryl-adenylate analogue has been refined at 2.7 angstrom resolution. The analogue is found in both active sites of the synthetase dimer but there is only one tRNA bound across the two subunits. The motif 2 loop of the active site into which the single tRNA enters interacts within the major groove of the acceptor stem. In particular, a novel ring-ring interaction between Phe262 on the extremity of this loop and the edges of bases U68 and C69 explains the conservation of pyrimidine bases at these positions in serine isoaccepting tRNAs. This active site takes on a significantly different ordered conformation from that observed in the other subunit, which lacks tRNA. Upon tRNA binding, a number of active site residues previously found interacting with the ATP or adenylate now switch to participate in tRNA recognition. These results shed further light on the structural dynamics of the overall aminoacylation reaction in class II synthetases by revealing a mechanism which may promote an ordered passage through the activation and transfer steps.  相似文献   

8.
Heterodimers of tyrosyl-tRNA synthetase from Bacillus stearothermophilus have been produced by mutagenesis at the subunit interface. Oppositely charged groups have been engineered into the subunits so that they can form a complementary pair. Wild-type tyrosyl-tRNA synthetase is a symmetrical dimer in which the side chains of the 2 Phe-164 residues interact at the subunit interface. Phe-164 was mutated to Asp in tyrosyl-tRNA synthetase and to Lys in a truncated enzyme (des-(321-419)tyrosyl-tRNA synthetase) which lacks the two tRNA-binding sites, but which can catalyze pyrophosphate exchange. The size difference allows subunit association to be studied by gel filtration chromatography. These changes induce reversible dissociation from active dimers into inactive monomers at pH values which favor ionization at position 164. A mixture of the two mutants near neutral pH is apparently fully active in pyrophosphate exchange and consists of a heterodimer of [Asp164]tyrosyl-tRNA synthetase and [Lys164]des-(321-419)tyrosyl-tRNA synthetase. Despite having only one binding site for tRNA, heterodimer has full aminoacylation activity at high concentrations of tyrosine. We have therefore produced a family of dimers that differ in stability near neutral pH. This novel approach using protein engineering allows specific dimerization of subunits of the same size that have different defined mutations, each subunit being tagged by the charge. Such hybrid proteins can be used to study subunit interaction.  相似文献   

9.
The contributions made by the alpha and beta subunits of E. coli glycyl-tRNA synthetase to the recognition of tRNA have been investigated via binding and immunological methods. Using the nitrocellulose filter assay, we have shown that isolated beta subunit, but not the alpha subunit, binds [14C]glycyl-tRNA with an affinity comparable to that of the native enzyme. Further, the data indicate that the beta subunit possesses one binding site for glycyl-tRNA while the native or reconstituted enzyme (alpha 2 beta 2) has two sites. Rabbit antibodies directed at the beta subunit or the holoenzyme inhibit efficiently the ability of the enzyme to aminoacylate tRNA while alpha-subunit antibodies have a smaller effect. Since none of the antisera have an appreciable effect on the ATP-PPi exchange activity of the enzyme under these conditions, the beta-subunit (and holoenzyme) antisera evidently interfere with productive tRNA binding. Taken together, the data indicate that the larger, beta subunit of glycyl-tRNA synthetase plays a major role in tRNA recognition.  相似文献   

10.
Methionyl-tRNA synthetase from Bacillus stearothermophilus, a dimer of molecular weight 2 X 85K, is converted by limited subtilisin digestion into a fully active monomeric fragment of molecular weight 64K. The reversible methionine activation reaction of these enzymes was followed through the variation of the intensity of their trypotophan fluorescence. Equilibrium and stopped-flow experiments show that the rate and mechanism for adenylate formation supported by the monomeric derivative are undistinguishable from those of each adenylating site of the native dimeric enzyme. In contrast, the rate of tRNA aminoacylation is improved upon limited proteolysis of the native enzyme. This behavior can be related to the anticooperativity of the binding of tRNA molecules to native dimeric enzyme. Accordingly, at 25 degrees C, the dimer might behave as a half-of-the-sites enzyme with only one active tRNA site at a time, compared to two after limited proteolysis with consequent irreversible disociation into two 64K fragments. Another modified form of the enzyme is obtained through limited tryptic digestion. This derivative is completely devoid of activity although its molecular weight under nondenaturating conditions remains undistinguishable from that of the 64K fragment generated by subtilisin. Denaturation reveals that this tryptic derivative is composed of two subfragments with molecular weights of 33K and 29K, respectively. The same fragments may also be directly obtained through limited tryptic digestion of the subtilsic fragment. Interestingly, although trypsin treatment has abolished the activity of the enzyme, fluorescence studies demonstrate that the ATP and methionine binding sites have remained intact. It is shown that the effect of the internal cut made by trypsin into the active 64K fragment has been to considerably depress the "coupling" between the methionine and nucleotide binding sites. Finally, the rate of inactivation of the enzyme by trypsin is observed to be substantially decreased by in situ synthetized methionyl adenylate but not by tRNA. These properties and others are discussed in relation to the problem of its significance of repeating sequences and structural "domains" within the class of aminoacyl-tRNA synthetases.  相似文献   

11.
A set of asymmetric hybrid tetramers of Escherichia coli d-3-phosphoglycerate dehydrogenase (PGDH) have been made by gene co-expression and KSCN-induced dimer exchange. These tetramers contain varied numbers of active sites and effector binding sites arranged in different orientations within the tetramer. They reveal that PGDH displays half-of-the-sites activity with respect to its active sites and that the two sites that are active at any particular time lie in subunits on either side of the nucleotide binding domain interface. Half-of-the-sites functionality is also observed for the effector even though all four sites eventually bind effector. That is, only two effector sites need to be occupied for maximum inhibition. Binding of the last two effector molecules does not contribute functionally to inhibition of activity. Furthermore, positive cooperativity of inhibition of activity by the effector is completely dependent on the positive cooperativity of binding of the effector. Binding of the first effector molecule produces a conformational change that essentially completely inhibits the active site within the subunit to which it binds and produces an approximate 33% inhibition of the active site in the subunit to which it is not bound. Binding of the second effector at the opposite regulatory domain interface completes the inhibition of activity. This simple relationship defines the positional and quantitative influence of effector ligand binding on activity and can be used to predict the maximum level of inhibition of individual hybrid tetramers. In addition, the site-specific quantitative relationship of effector binding to individual active sites can be used to model the inhibition profile with relatively good agreement. These simple rules for the site to site interaction in PGDH provide significant new insight into the mechanism of allostery of this enzyme.  相似文献   

12.
The localization of the binding sites of the different ligands on the constitutive subunits of yeast phenylalanyl-tRNA synthetase was undertaken using a large variety of affinity and photoaffinity labelling techniques. The RNAPhe was cross-linked to the enzyme by non-specific ultraviolet irradiation at 248 nm, specific irradiation in the wye base absorption band (315 nm), irradiation at 335 nm, in the absorption band of 4-thiouridine (S4U) residues introduced in the tRNA molecule, or by Schiff's base formation between periodate-oxidized tRNAPhe (tRNAPheox) and the protein. ATP was specifically incorporated in its binding site upon photosensitized irradiation. The amino acid could be linked to the enzyme upon ultraviolet irradiation, either in the free state, engaged in the adenylate or bound to the tRNA. The tRNA, the ATP molecule and the amino acid linked to the tRNA were found to interact exclusively with the beta subunit (Mr 63000). The phenylalanine residue, either free or joined to the adenylate, could be cross-linked with equal efficiency to eigher type of subunit, suggesting that the amino acid binding site is located in a contact area between the two subunits. The Schiff's base formation between tRNAPheox and the enzyme shows the existence of a lysyl group close to the binding site for the 3'-terminal adenosine of tRNA. This result was confirmed by the study of the inhibition of yeast phenylalanyl-tRNA synthetase with pyridoxal phosphate and the 2',3'-dialdehyde derivative of ATP, oATP.  相似文献   

13.
Insulin-degrading enzyme (IDE) exists primarily as a dimer being unique among the zinc metalloproteases in that it exhibits allosteric kinetics with small synthetic peptide substrates. In addition the IDE reaction rate is increased by small peptides that bind to a distal site within the substrate binding site. We have generated mixed dimers of IDE in which one or both subunits contain mutations that affect activity. The mutation Y609F in the distal part of the substrate binding site of the active subunit blocks allosteric activation regardless of the activity of the other subunit. This effect shows that substrate or small peptide activation occurs through a cis effect. A mixed dimer composed of one wild-type subunit and the other subunit containing a mutation that neither permits substrate binding nor catalysis (H112Q) exhibits the same turnover number per active subunit as wild-type IDE. In contrast, a mixed dimer in which one subunit contains the wild-type sequence and the other contains a mutation that permits substrate binding, but not catalysis (E111F), exhibits a decrease in turnover number. This indicates a negative trans effect of substrate binding at the active site. On the other hand, activation in trans is observed with extended substrates that occupy both the active and distal sites. Comparison of the binding of an amyloid β peptide analog to wild-type IDE and to the Y609F mutant showed no difference in affinity, indicating that Y609 does not play a significant role in substrate binding at the distal site.  相似文献   

14.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

15.
Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus exhibits half-of-the-sites reactivity and negative cooperativity in binding of tyrosine. Protein engineering has been applied to the enzyme to determine whether it can be reversibly dissociated into monomers and if the monomers are active. The target for mutation is the residue Phe-164. The side chain of Phe-164 in one subunit interacts with its symmetry-related partner in the other. Mutation of Phe-164----Asp-164 gives a mutant [TyrTS(Asp-164)] that undergoes dissociation at high pH when the aspartate residues are ionized. The monomer is inactive and does not bind tyrosine. Dissociation is enhanced at low concentrations of enzyme by a mass action effect. Kinetic and binding measurements on TyrTS(Asp-164) with tyrosine and tyrosyl adenylate show that the monomer has very weak affinity for these ligands. Accordingly, dimerization is favored by high concentrations of tyrosine and ATP since the dimeric form has a high affinity for the ligands. The presence of tRNA does not encourage dimer formation, and so it must bind to the monomer. TyrTS(Asp-164) is fully active at pH 6 where dimerization is favored but has low activity at pH 7.8 where dissociation is favored. It should now prove possible to engineer heterodimers that may be used to investigate the subunit interactions further.  相似文献   

16.
Auto-inactivated EScherichia coli glutamine synthetase contains 1 eq each of L-methionine-S-sulfoximine phosphate and ADP and 2 eq of Mn2+ tightly bound to the active site of each subunit of the dodecameric enzyme (Maurizi, M. R., and Ginsburg, A. (1982) J. Biol. Chem. 257, 4271-4278). Complete dissociation and unfolding in 6 M guanidine HCl at pH 7.2 and 37 degrees C requires greater than 4 h for the auto-inactivated enzyme complex (less than 1 min for uncomplexed enzyme). Release of ligands and dissociation and unfolding of the protein occur in parallel but follow non-first order kinetics, suggesting stable intermediates and multiple pathways for the dissociation reactions. Treatment of Partially inactivated glutamine synthetase (2-6 autoinactivated subunits/dodecamer) with EDTA and dithiobisnitrobenzoic acid at pH 8 modifies approximately 2 of the 4 sulfhydryl groups of unliganded subunits and causes dissociation of the enzyme to stable oligomeric intermediates with 4, 6, 8, and 10 subunits, containing equal numbers of uncomplexed subunits and autoinactivated subunits. With greater than 70% inactivated enzyme, no dissociation occurs under these conditions. Electron micrographs of oligomers, presented in the appendix (Haschemeyer, R. H., Wall, J. S., Hainfeld, J., and Maurizi, M. R., (1982) J. Biol. Chem. 257, 7252-7253) suggest that dissociation of partially liganded dodecamers occurs by cleavage of intra-ring subunit contacts across both hexagonal rings and that these intra-ring subunit contacts across both hexagonal rings and that these intra-ring subunit interactions are stabilized by active site ligand binding. Isolated tetramers (Mr = 200,000; s20,w = 9.5 S) retain sufficient native structure to express significant enzymatic activity; tetramers reassociate to dodecamers and show a 5-fold increase in activity upon removal of the thionitrobenzoate groups with 2-mercaptoethanol. Thus, the tight binding of ligands to the subunit active site strengthens both intra- and inter-subunit bonding domains in dodecameric glutamine synthetase.  相似文献   

17.
Earlier studies have shown that native phenylalanyl-tRNA synthetase from baker's yeast contains two different kinds of subunits, alpha of molecular weight 73000 and beta of molecular weight 63000. The enzyme is an asymmetric tetramer alpha-2beta-2, which binds two moles of each ligand per mole. Incubation of the purified enzyme with trypsin results in an irreversible conversion: the alpha-subunit remains apparently unchanged but beta is rapidly degraded and yields a lighter species beta of molecular weight 41000. The trypsin-modified enzyme is an alpha-2beta-2 molecule which can still activate phenylalanine but cannot transfer it to tRNA-Phe; furthermore it does not bind tRNA-Phe but its kinetic parameters are identical to those of the native enzyme with respect to ATP and phenylalanine. Therefore the two beta subunits play a critical part in tRNA binding. Isolated alpha or beta subunits exhibit no significant activity and both types of subunit seem to be required for phenylalanine activation.  相似文献   

18.
The lysine-183 residues of yeast glyceraldehyde 3-phosphate dehydrogenase, in contrast to the cysteine-149 residues, react independently with acylating and alkylating agents. Modification of all four residues is required to inactivate the enzyme in spite of the fact that this residue is apparently in the neighborhood of the cysteine-149 involved in half-of-the-sites activity. The modification of the lysine-183 residue, however, influences the half-of-the-sites effect since alkylation of the cysteine-149 residues of the enzyme whose lysine-183 residues are acetylated follows a linear pattern with each subunit acting independently. Four lysine residues outside the active site can be modified with fluorodinitrobenzene, causing 80% loss in enzyme activity. Once again each subunit acts independently. This same residue can also be modified by a fluorescein label which can serve as a reporter group for binding and conformational changes occurring at the active site. The results add support for the functional symmetry of the apo-enzyme and demonstrate how the co-operativity between subunits can be altered by amino acid modification.  相似文献   

19.
The method of affinity chromatography on sepharose with immobilized tRNA in the presence of urea was developed for separating the subunits of phenylalanyl-tRNA synthetase from E. coli MRE-600 (subunit structure alpha 2 beta 2). Specific binding of large beta-subunits of the enzyme on immobilized tRNA testifies the localization of the tRNA-binding center on the beta-subunit of phenylalanyl-tRNA synthetase. Separately alpha- and beta-subunits of the enzyme exhibit no catalytic activity. Incubation of the mixture of alpha- and beta-subunits in conditions leading to reassociation of the oligomeric structure results in restoration of catalytic activity of the enzyme. In the presence of urea resin with immobilised analogs of ATP binds alpha- and beta-subunits of the enzyme. This testifies the presence of nucleotide-binding sites on both subunits. The possibility of using the affinity chromatography method to separate non-identical subunits of different enzymes is discussed.  相似文献   

20.
Using selective chemical modification of histidine residues of the alpha-ketoglutarate dehydrogenase component within the alpha-ketoglutarate dehydrogenase complex, the existence of interconvertible forms of the enzyme was demonstrated. These forms are distinguished by kinetics of inactivation caused by diethylpyrocarbonate. The interconversion of the enzyme forms involves alpha-ketoglutarate. Studies on substrate effects on the inactivation kinetics of individual enzyme forms revealed the non-equivalency of the enzyme active centers within the dimeric molecule of the alpha-ketoglutarate dehydrogenase component. The accessibility of an essential histidine residue in the active center of a neighbouring substrate-free monomer to the modifier increases as a result of interaction of the enzyme active centers during alpha-ketoglutarate binding by one of the subunits. The non-equivalency of the active centers manifests itself in different rates of interaction and in the unequal stability of binding of alpha-ketoglutarate to the alternate sites of the dimer. It is assumed that the biphasic kinetics of inactivation of pigeon breast muscle alpha-ketoglutarate dehydrogenase is due to tight binding of alpha-ketoglutarate in one of active centers of the enzyme dimeric molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号