首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombinant porcine (rpST) and bovine somatotropins (rbST) synthesized in Escherichia coli contain the amino acid, epsilon-N-acetyllysine. This amino acid was initially discovered in place of the normal lysine144 in a modified reversed-phase HPLC (RP-HPLC) species of rpST. Mass spectrometry and amino acid sequencing of a tryptic peptide isolated from this RP-HPLC purified protein were used to identify this altered residue as epsilon-N-acetyllysine. Ion-exchange chromatography was utilized to prepare low isoelectric point (pI) forms of rpST and rbST, which are enriched in epsilon-N-acetyllysine. Electrospray mass spectrometry demonstrated that the majority of the protein in these low pI fractions contained species 42 Da larger than normal. Immobilized pH gradient electrophoresis (IPG) of the ion-exchange purified low pI proteins was used to isolate several monoacetylated species of rpST and rbST. The location of the acetylated lysine in each IPG-purified protein was determined by tryptic peptide mapping and amino acid sequencing of the altered tryptic peptides. Amino acid analyses of enzymatic digests of rpST and rbST were also used to confirm the presence of epsilon-N-acetyllysine in these recombinant proteins. These data demonstrate that a significant portion of rpST and rbST produced in E. coli contain this unusual amino acid.  相似文献   

2.
Cell-free protein-synthesizing systems from Escherichia coli and wheat germ were compared for their capacity to support the translocation of secretory proteins across microsomal membranes derived from mammalian endoplasmic reticulum. Three different secretory proteins, two of bacterial and one of eucaryotic origin, were tested in this respect. In all three cases a contrast between the results in the eucaryotic and procaryotic protein-synthesizing systems was revealed. Whereas the eucaryotic system, as expected, supported the translocation of nascent secretory proteins across the microsomal membranes, the procaryotic system failed to do so. This failure was not due to the absence of a translocation-promoting activity or the presence of a translocation-blocking activity in the procaryotic system. These results demonstrate a specificity in the requirement of components of the protein-synthesizing machinery for protein translocation. These components might participate in forming a functional ribosome-membrane junction during protein translocation. The nascent secretory chain alone is not sufficient for making this junction, which might involve the postulated binding of the ribosome to the signal recognition particle or another component of the membrane.  相似文献   

3.
A procedure was developed for the purification of shikimate dehydrogenase from Escherichia coli. Homogeneous enzyme with specific activity 1100 units/mg of protein was obtained in 21% overall yield. The subunit Mr estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate was 32 000. The native Mr, estimated by gel-permeation chromatography on a TSK G2000SW column, was also 32 000. E. coli shikimate dehydrogenase is therefore a monomeric NADP-linked dehydrogenase.  相似文献   

4.
Molecular cloning techniques were used to construct Escherichia coli-lambda hybrids that contained many of the genes necessary for flagellar rotation and chemotaxis. The properties of specific hybrids that carried the classical "cheA" and "cheB" loci were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the hybrids redefined the "cheA" and "cheB" regions. Six genes were resolved: cheA, cheW, cheX, cheB, cheY, and cheZ. They directed the synthesis of specific polypeptides with the following apparent molecular weights: cheA, 76,000 and 66,000; cheW, 12,000; cheX, 28,000; cheB, 38,000; cheY, 8,000; and cheZ, 24,000. The presence of another gene, cheM, was inferred from the protein synthesis experiments. The cheM gene directed the synthesis of polypeptides with apparent molecular weights of 63,000, 61,000, and 60,000. The synthesis of all of these polypeptides is regulated by the same mechanisms that regulate the synthesis of flagellar-related structural components.  相似文献   

5.
Summary Saccharomyces cerevisiae 2-m DNA and some of its restriction fragments were integrated in vector pCR1, pBR313 or pBR322 and their expression in Escherichia coli P678-54 minicells was analyzed. 2-m DNA inserted at the EcoRI site of pCR1 or pBR313 and at the PstI site of pBR322, promoted the synthesis of polypeptides of 48,000, 37,000, 35,000 and 19,000 daltons. The DNA regions coding for these polypeptides were mapped on the 2-m DNA molecule by insertion of single EcoRI or HindIII restriction fragments and comparison of the polypeptides produced. For the synthesis of the 37,000 dalton polypeptide, intact sites RIB and H3 were required. The disappearance of the 37,000 dalton polypeptide on interruption of one of these sites by insertion of the vector, was correlated with the appearance of a polypeptide of 22,000 or 23,500 daltons repectively. The DNA sequence coding for the 37,000 dalton polypeptide, therefore, has to be located in the S-loop region close to or overlapping with the sites RIB and H3. Assuming that the 22,000 and the 23,500 dalton polypeptides are truncated forms of the 37,000 dalton polypeptide, the last polypeptide can be exactly mapped. The polypeptide of 48,000 daltons was mapped to that half of the L-loop segment containing the sites H1 and H2. If, however, HindIII fragment H1-H2 was expressed, the 48,000 dalton polypeptide was lost and concomitantly a 43,000 dalton polypeptide appeared. We assume that this polypeptide results from early termination of the polypeptide of 48,000 daltons. The 35,000 and 19,000 dalton polypeptides were mapped to the S-loop region.The integrated inverted repeat sequence of yeast 2-m DNA did not induce any detectable insert-specific polypeptide synthesis.  相似文献   

6.
Summary The short (0-20S) Okazaki fragments seen upon pulse-labeling E. coli (thy +, deo +) with 3H-thymidine are actually composed of three types of DNA fragments: (1) true replication intermediates, (2) post-replication repair fragments (such as those which arise subsequent to the removal of misincorporated uracil), and (3) chromosomal fragments. Our experiments show that the number of pulse-labeled fragments decreases slightly with the introduction of the ung-1 mutation into E. coli K-12 (dut +, thyl +, polA +), and that there are fewer fragments found in E. coli B/r than in E. coli K-12 ung-1. This suggests that while some fraction of pulse-labeled fragments may be due to repair, this fraction can vary among different strains; moreover, the majority of fragments appear to be replication intermediates. Selfhybridization (reannealing) of pulse-labeled fragments from E. coli B/r show that these fragments are asymmetric with respect to the strand origin and with respect to their size: the smaller (3-8S) fragments come from only one of the parental strands, whereas the larger (13-20S) fragments are synthesized equally from both parental strands. We interpret our results to mean that replication can be discontinuous on both strands but asymmetric with respect to both the size of the fragments and the size of the discontinuous region on the two strands.  相似文献   

7.
The purification of the Escherichia coli UvrABC incision system.   总被引:9,自引:10,他引:9       下载免费PDF全文
The UvrA, UvrB and UvrC proteins of Escherichia coli have been purified in good yields to homogeneity with rapid three- or four-step purification procedures. The cloned uvrA and uvrB genes were placed under control of the E. coli bacteriophage lambda PL promoter for amplification of expression. Expression of the uvrC gene could not be amplified by this strategy, however, subcloning of this gene into the replication-defective plasmid pRLM24 led to significant overproduction of the UvrC protein. The purified UvrA protein, with its associated ATPase activity, has a molecular weight of 114,000, the purified UvrB is an 84,000 molecular weight protein and the UvrC protein has a molecular weight of 67,000.  相似文献   

8.
The homogeneous preparations of the brucella protein antigens were isolated from the hybrid producer strains Escherichia coli 6SE579 and 6SE800 by the cold osmotic shock technique and further purification on immunosorbents. The 18 + 38 and 38 kDa antigens were obtained. The antiserum specific to brucella 38 kDa antigen was obtained and used for isolation of the 18 kDa antigen from the producer strain 6SE579 synthesizing two brucella antigens. The immunosorbent developed on the basis of BrCn-agarose conjugated with antibodies from the serum has permitted isolation of 18 kDa protein antigen preparation. Thus, the combined technique of cold osmotic shock and affinity chromatography on immunosorbents permits one to isolate highly purified individual antigens of brucella from Escherichia coli K12 producer cells.  相似文献   

9.
eEF1A, the eukaryotic homologue of bacterial elongation factor Tu, is a well characterized translation elongation factor responsible for delivering aminoacyl-tRNAs to the A-site at the ribosome. Here we show for the first time that eEF1A also associates with the nascent chain distal to the peptidyltransferase center. This is demonstrated for a variety of nascent chains of different lengths and sequences. Interestingly, unlike other ribosome-associated factors, eEF1A also interacts with polypeptides after their release from the ribosome. We demonstrate that eEF1A does not bind to correctly folded full-length proteins but interacts specifically with proteins that are unable to fold correctly in a cytosolic environment. This association was demonstrated both by photo-cross-linking and by a functional refolding assay.  相似文献   

10.
11.
Proteins synthesized in Escherichia coli during recovery from starvation were resolved by two-dimensional polyacrylamide gel electrophoresis. Nine outgrowth-specific proteins, which appeared in two kinetic groups, that were not detected in either starved or exponential-phase cells were synthesized. Five other proteins whose rate of synthesis during outgrowth was > or = 5-fold higher than during exponential growth were observed.  相似文献   

12.
13.
14.
15.
Glycerophosphate acyltransferase, a membrane-bound enzyme catalyzing the initial step of phospholipid biosynthesis in Escherichia coli, has been extracted with Triton X-100, a nonionic detergent, and purified 20- to 40-fold. This preparation is free from lysophosphatidate acyltransferase. Glycerophosphate acyltransferase is inactive in detergent extracts, but can be reconstituted by the addition of phospholipid. Under such conditions, the enzyme is associated with phospholipid. The sole product of the reaction with acyl coenzyme A as substrate is 1-acyl-sn-glycero-3-phosphate. Furthermore, the enzyme shows a marked preference for saturated fatty acyl conenzyme A, implying that this enzyme is responsible for the predominance of saturated moieties in position 1 of E. coli phospholipids. Acyltransferase from two mutants, plsA and plsB, was partially purified and characterized. Results support the view that plsB is a structural gene for the acyltransferase, but suggest that the plsA gene product is not directly involved in phospholipid biosynthesis.  相似文献   

16.
This report describes an Escherichia coli genetic system that permits bacterial genetic methods to be applied to the study of essentially any prokaryotic or eukaryotic site-specific DNA binding protein. It consists of two parts. The first part is a set of tools that facilitate construction of customized E.coli strains bearing single copy lacZYA reporters that are repressed by a specific target protein. The second part is a pair of regulatable protein expression vectors that permit in vivo production of the target protein at levels appropriate for genetic experiments. When expressed in a properly designed reporter strain, the target protein represses the lac genes, resulting in an E.coli phenotype that can be quantitatively measured or exploited in large scale genetic screens or selections. As a result, large plasmid-based libraries of protein genes or pools of mutagenized variants of a given gene may be examined in relatively simple genetic experiments. The strain construction technique is also useful for generating E.coli strains bearing reporters for other types of genetic systems, including repression-based and activation-based systems in which chimeric proteins are used to examine interactions between foreign protein domains.  相似文献   

17.
We investigated the stability of fusion proteins composed of the signal peptide of the heat-labile enterotoxin of Escherichia coli and three polypeptides: the bacterial cytoplasmic chloramphenicol acetyltransferase, the mouse dihydrofolate reductase, and human immune interferon. We demonstrate that these proteins are rapidly degraded as a result of being targeted to the secretion apparatus of E. coli, with the extent of degradation varying among the three fusion proteins. Four lines of experimental evidence are presented in support of this suggestion. First, the chimeric polypeptides containing a functional signal peptide were detected in low amounts in vivo. When a mutation was introduced in the signal peptide, resulting in lack of recognition by the secretion apparatus, the chimeric proteins accumulated at high levels in the cytoplasm of the cell. Second, both the wild-type and mutant polypeptides accumulated in a purified and reconstituted in vitro translation system from E. coli and were equally susceptible to digestion by an exogenous protease. Third, the chimeric polypeptides lacking the signal peptide accumulated in a stable form in vivo. Fourth, the precursors of the proteins containing a functional signal peptide accumulated in a secA ts mutant at the restrictive temperature when secretion was blocked, suggesting that degradation is tightly linked to the secretion apparatus.  相似文献   

18.
1. Methylglyoxal synthase was purified over 1500-fold from glycerol-grown Escherichia coli K 12 strain CA 244. The purified enzyme was inactivated by heat or proteolysis, had a molecular weight of approx. 67000, a pH optimum of 7.5 and was specific for dihydroxyacetone phosphate with K(m) 0.47mm. 2. The possibility that a Schiff-base intermediate was involved in the reaction mechanism was investigated but not confirmed. 3. The purified enzyme lost activity, especially at low temperature, but could be stabilized by P(i). Two binding sites for P(i) may be present on the enzyme. Of other compounds tested only the substrate, dihydroxyacetone phosphate, and bovine serum albumin showed any significant stabilizing effect. 4. Phosphoenolpyruvate, 3-phosphoglycerate, PP(i) and P(i) were potent inhibitors of the enzyme. Kinetic experiments showed that PP(i) was apparently a simple competitive inhibitor, but inhibition by the other compounds was more complex. In the presence of P(i) the enzyme behaved co-operatively, with at least three binding sites for dihydroxyacetone phosphate. 5. It is proposed that methylglyoxal synthase and glyceraldehyde 3-phosphate dehydrogenase play important roles in the catabolism of the triose phosphates in E. coli. Channelling of dihydroxyacetone phosphate via methylglyoxal would not be linked to ATP formation and could be involved in the uncoupling of catabolism and anabolism.  相似文献   

19.
O N Danilevskaia 《Genetika》1979,15(12):2087-2107
The paper presents a survey of literature concerned with the possibility of expression of plasmid-clones genes from eukaryotic organisms in bacteria cells. Studies on bacterial synthesis of somatostatin, human insulin, hormone of rat growth and proteins: chicken ovalbumin and mouse dihydrofolate reductase are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号