首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies of herpes simplex virus type 1 (HSV-1) thymidine (dThd) kinase (TK) crystal structures show that purine and pyrimidine bases occupy distinct positions in the active site but approximately the same geometric plane. The presence of a bulky side chain, such as tyrosine at position 167, would not be sterically favorable for pyrimidine or pyrimidine nucleoside analogue binding, whereas purine nucleoside analogues would be less affected because they are located further away from the phenylalanine side chain. Site-directed mutagenesis of the conserved Ala-167 and Ala-168 residues in HSV-1 TK resulted in a wide variety of differential affinities and catalytic activities in the presence of the natural substrate dThd and the purine nucleoside analogue drug ganciclovir (GCV), depending on the nature of the amino acid mutation. A168H- and A167F-mutated HSV-1 TK enzymes turned out to have a virtually complete knock-out of dThd kinase activity (at least approximately 4-5 orders of magnitude lower) presumably due to a steric clash between the mutated amino acid and the dThd ring. In contrast, a full preservation of the GCV (and other purine nucleoside analogues) kinase activity was achieved for A168H TK. The enzyme mutants also markedly lost their binding capacity for dThd and showed a substantially diminished feedback inhibition by thymidine 5'-triphosphate. The side chain size at position 168 seems to play a less important role regarding GCV or dThd selectivity than at position 167. Instead, the nitrogen-containing side chains from A168H and A168K seem necessary for efficient ligand discrimination. This explains why A168H-mutated HSV-1 TK fully preserves its GCV kinase activity (Vmax/Km 4-fold higher than wild-type HSV-1 TK), although still showing a severely compromised dThd kinase activity (Vmax/Km 3-4 orders of magnitude lower than wild-type HSV-1 TK).  相似文献   

2.
To establish cell systems appropriate for investigating the mode of action of antiherpetic nucleoside analogues, mutant cell strains were constructed from murine mammary carcinoma FM3A cells, which were deficient in TK, but were transformed with a recombinant plasmid DNA containing the HSV-2 TK gene. The transformed cells incorporated the viral DNA, expressed viral TK activity and showed unusually high sensitivity to the cytostatic action of the antiherpetic nucleoside analogues ACV and IVDU, both of which were only weakly inhibitory to the growth of the parent cells. Curiously, the FM3A cell strains transformed with HSV-2 TK gene showed a higher sensitivity to ACV and IVDU than the previously established cell line transformed with HSV-1 TK gene. This contrasts with the inhibitory effects of ACV and IVDU on acute HSV infection, since HSV-2 infection is slightly or considerably less susceptible than HSV-1 infection to inhibition by ACV or IVDU, respectively.  相似文献   

3.
Synthesis of pyrimidine derivatives with a side-chain attached to the C-6 of pyrimidine ring (6-14) is reported. Target compounds 8 and 12 were subjected to in vitro phosphorylation tests, determination of their binding affinities to herpes simplex virus (HSV-1) thymidine kinase (TK) and catalytic turnover constants. Fluorinated pyrimidine derivative 12 (40 microM) exhibited better binding affinity for HSV-1 TK than acyclovir (ACV, 170 microM) and ganciclovir (GCV, 48 microM). Catalytic turnover constant (k(cat)) of 12 (0.08 s(-1)) was close to the k(cat) values of ACV (0.10 s(-1)) and GCV (0.10 s(-1)). Furthermore, compounds 8 and 12 showed no cytotoxic effects in HSV-1 TK-transduced and non-transduced cell lines. Besides, compounds 8 and 12 did not exhibit antiviral or cytostatic activities against several viruses and malignant tumor cell lines that were evaluated. The new fluorinated pyrimidine derivative 16 that is phosphorylated by HSV-1 TK could be developed as non-toxic PET-tracer molecule. Thus, 18F labelling of the precursor 14 was performed by nucleophilic substitution using [18F] tetrabutylammonium fluoride as the fluorinating reagent.  相似文献   

4.
Varicella zoster virus (VZV) is usually associated with mild to moderate illness in immunocompetent patients. However, older age and immune deficiency are the most important risk factors linked with virus reactivation and severe complications. Treatment of VZV infections is based on nucleoside analogues, such as acyclovir (ACV) and its valyl prodrug valacyclovir, penciclovir (PCV) as its prodrug famciclovir, and bromovinyldeoxyuridine (BVDU; brivudin) in some areas. The use of the pyrophosphate analogue foscarnet (PFA) is restricted to ACV-resistant (ACV(r)) VZV infections. Since antiviral drug resistance is an emerging problem, we attempt to describe the contributions of specific mutations in the viral thymidine kinase (TK) gene identified following selection with ACV, BVDU and its derivative BVaraU (sorivudine), and the bicyclic pyrimidine nucleoside analogues (BCNAs), a new class of potent and specific anti-VZV agents. The string of 6 Cs at nucleotides 493 to 498 of the VZV TK gene appeared to function as a hot spot for nucleotide insertions or deletions. Novel amino acid substitutions (G24R and T86A) in VZV TK were also linked to drug resistance. Six mutations were identified in the "palm domain" of VZV DNA polymerase in viruses selected for resistance to PFA, PCV, and the 2-phophonylmethoxyethyl (PME) purine derivatives. The investigation of the contributions of specific mutations in VZV TK or DNA polymerase to antiviral drug resistance and their impacts on the structures of the viral proteins indicated specific patterns of cross-resistance and highlighted important differences, not only between distinct classes of antivirals, but also between ACV and PCV.  相似文献   

5.
Understanding the functional and mechanistic properties of the multi-substrate herpes simplex virus type-1 thymidine kinase (HSV-1 TK) remains critical to defining its role as a major pharmacological target in herpesvirus and gene therapies for cancer. An inherent limitation of the activity of HSV-TK is the >70-fold difference in the K(m)s for phosphorylation of thymidine over the pro-drug ganciclovir (GCV). To engineer an HSV-1 TK isoform that is specific for GCV as the preferred substrate, 16 site-specific mutants were generated. The mutations were concentrated at conserved residues involved in nucleoside base binding, Gln125 and near sites 3 and 4 involved in catalysis and substrate binding. The substrate preferences of each mutant enzyme were compared with wild-type HSV-1 TK. One mutant, termed Q7530 TK, had a lower K(m) for GCV than thymidine. Expression of the Q7530 TK in tumor cells indicated comparable metabolism to and improved sensitivity to GCV over wild-type HSV-1 TK, with minimal thymidine phosphorylation activity. A molecular modeling simulation of the different HSV-1 TK active-sites was done for GCV and thymidine binding. It was concluded that mutations at Gln125 and near site 4, especially at Ala168, were responsible for loss of deoxypyrimidine substrate binding.  相似文献   

6.
Human cells salvage pyrimidine deoxyribonucleosides via 5'-phosphorylation which is also the route of activation of many chemotherapeutically used nucleoside analogs. Key enzymes in this metabolism are the cytosolic thymidine kinase (TK1), the mitochondrial thymidine kinase (TK2) and the cytosolic deoxycytidine kinase (dCK). These enzymes are expressed differently in different tissues and cell cycle phases, and they display overlapping substrate specificities. Thymidine is phosphorylated by both thymidine kinases, and deoxycytidine is phosphorylated by both dCK and TK2. The enzymes also phosphorylate nucleoside analogs with very different efficiencies. Here we present specific radiochemical assays for the three kinase activities utilizing analogs as substrates that are by more than 90 percent phosphorylated solely by one of the kinases; i.e. 3'-azido-2',3'-dideoxythymidine (AZT) as substrate for TK1, 1-beta-D-arabinofuranosylthymidine (AraT) for TK2 and 2-chlorodeoxyadenosine (CdA) for dCK. We determined the fraction of the total deoxycytidine and thymidine phosphorylating activity that was provided by each of the three enzymes in different human cells and tissues, such as resting and proliferating lymphocytes, lymphocytic cells of leukemia patients (chronic lymphocytic, chronic myeloic and hairy cell leukemia), muscle, brain and gastrointestinal tissue. The detailed knowledge of the pyrimidine deoxyribonucleoside kinase activities and substrate specificities are of importance for studies on chemotherapeutically active nucleoside analogs, and the assays and data presented here should be valuable tools in that research.  相似文献   

7.
A series of fluorine containing tricyclic analogues of acyclovir (ACV, 1) and ganciclovir (GCV, 2) were synthesized and evaluated for their activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and cytostatic activity against HSV-1 thymidine kinase (TK) gene-transduced human osteosarcoma tumour cells. It was found that fluorine substitution reduced the antiviral activity, but most of the new compounds were pronounced cytostatic agents with potency and selectivity similar to those of parental ACV and GCV. Compounds 12, 13 and 16 seem to be promising as labeled substrates for (19)F NMR studies of the HSV TK-ligand interaction and/or monitoring of their metabolites in cells expressing HSV TK.  相似文献   

8.
Cyclobutane analogues of the antiviral cyclopropane nucleoside A-5021 were synthesized from 1-cyano-1,2-bis(methoxycarbonyl)cyclobutane via 1) isolation of both diastereomers by crystallization, 2) reduction to aminodiol, 3) coupling with 2-amino-4,6-dichloropyrimidine, and 4) guanine ring formation. Despite their structural resemblance to A-5021, the compounds were devoid of antiherpetic activity.  相似文献   

9.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   

10.
Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK). Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acv(r) clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcv(r) mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants.  相似文献   

11.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial rate limiting phosphorylation of deoxynucleosides and are essential enzymes for mitochondrial function. Chemotherapy using nucleoside analogs is often associated with mitochondrial toxicities. Here we showed that incubation of U2OS cells with didanosine (ddI, 2′,3′-dideoxyinosine), a purine nucleoside analog used in the highly active antiretroviral therapy (HAART), led to selective degradation of both mitochondrial TK2 and dGK while the cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) were not affected. Addition of guanosine to the ddI-treated cells prevented the degradation of mitochondrial TK2 and dGK. The levels of intracellular reactive oxygen species and protein oxidation in ddI-treated and control cells were also measured. The results suggest that down-regulation of mitochondrial TK2 and dGK may be a mechanism of mitochondrial toxicity caused by antiviral and anticancer nucleoside analogs.  相似文献   

12.
Human herpesvirus 8 (HHV8) open reading frame (ORF) 21 is predicted to encode a protein similar to the thymidine kinase (TK) enzyme of other herpesviruses. Expressed in mammalian cells, ORF 21 was found to have low TK activity, based on poor growth in media containing hypoxanthine-aminopterin-thymidine (HAT) and low incorporation of [(3)H]thymidine into high-molecular-weight DNA. Kinetic analysis using HHV8 TK as a purified glutathione S-transferase (GST) fusion protein showed that the enzyme has a comparatively high K(m) for thymidine (dThd) of approximately 33.2 microM. Nearly 50% of the phosphorylated product of the reaction with dThd was thymidylate. This monophosphate kinase activity was more pronounced with 3'-azido-3'-deoxythymidine (AZT), in which 78% of the reaction product was AZT diphosphate. Thymidine analogs competitively inhibited dThd phosphorylation by HHV8 TK, while 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, and corresponding analogs did not. Further competition experiments revealed that the nucleoside analog ganciclovir (GCV), at up to 1,000-fold molar excess, could not significantly inhibit dThd phosphorylation by the enzyme. In support of these data, 143B TK(-) cells expressing HHV8 TK phosphorylated GCV very poorly and were not susceptible to GCV toxicity compared to parental cells. Phosphorylation of [(3)H]GCV by a purified GST-HHV8 TK fusion protein was not detected by high-pressure liquid chromatography analysis. Structural features of HHV8 TK substrate recognition were investigated. Therapeutic implications of these findings are discussed.  相似文献   

13.
The therapeutic combination of the herpesvirus simplex virus type 1 (HSV-1) thymidine kinase (TK) gene and the prodrug, ganciclovir (GCV), has found great utility for the treatment of many types of cancer. After initial phosphorylation of GCV by HSV-1 TK, cellular kinases generate the toxic GCV-triphosphate metabolite that is incorporated into DNA and eventually leads to tumor cell death. The cellular and pharmacological mechanisms by which metabolites of GCV lead to cell death are still poorly defined. To begin to address these mechanisms, different mutated forms of HSV-1 TK at residue Gln-125 that have distinct substrate properties were expressed in mammalian cell lines. It was found that expression of the Asn-125 HSV-1 TK mutant in two cell lines, NIH3T3 and HCT-116, was equally effective as wild-type HSV-1 TK for metabolism and sensitivity to GCV, bystander effect killing and induction of apoptosis. The major difference between the two enzymes was the lack of deoxypyrimidine metabolism in the Asn-125 TK-expressing cells. In HCT-116 cells expressing the Glu-125 TK mutant, GCV metabolism was greatly attenuated, yet at higher GCV concentrations, cell sensitivity to the drug and bystander effect killing were diminished but still effective. Cell cycle analysis, 4', 6'-diamidine-2'-phenylindoledihydrochloride staining, and caspase 3 activation assays indicated different cell death responses in the Glu-125 TK-expressing cells as compared with the wild-type HSV-1 TK or Asn-125 TK-expressing cells. A mechanistic hypothesis to explain these results based on the differences in GCV-triphosphate metabolite levels is presented.  相似文献   

14.
5'-Phosphorylation, catalyzed by human deoxycytidine kinase (dCK), is a crucial step in the metabolic activation of anticancer and antiviral nucleoside antimetabolites, such as cytarabine (AraC), gemcitabine, cladribine (CdA), and lamivudine. Recently, crystal structures of dCK (dCKc) with various pyrimidine nucleosides as substrates have been reported. However, there is no crystal structure of dCK with a bound purine nucleoside, although purines are good substrates for dCK. We have developed a model of dCK (dCKm) specific for purine nucleosides based on the crystal structure of purine nucleoside bound deoxyguanosine kinase (dGKc) as the template. dCKm is essential for computer aided molecular design (CAMD) of novel anticancer and antiviral drugs that are based on purine nucleosides since these did not bind to dCKc in our docking experiments. The active site of dCKm was larger than that of dCKc and the amino acid (aa) residues of dCKm and dCKc, in particular Y86, Q97, D133, R104, R128, and E197, were not in identical positions. Comparative docking simulations of deoxycytidine (dC), cytidine (Cyd), AraC, CdA, deoxyadenosine (dA), and deoxyguanosine (dG) with dCKm and dCKc were carried out using the FlexX docking program. Only dC (pyrimidine nucleoside) docked into the active site of dCKc but not the purine nucleosides dG and dA. As expected, the active site of dCKm appeared to be more adapted to bind purine nucleosides than the pyrimidine nucleosides. While water molecules were essential for docking experiments using dCKc, the absence of water molecules in dCKm did not affect the ability to correctly dock various purine nucleosides.  相似文献   

15.
АBSTRACT

Esters of the antiherpetic drugs ganciclovir, penciclovir with the bile acids (cholic, chenodeoxycholic and deoxycholic) and amino acid esters of acyclovir were generated and evaluated for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The antiviral assays demonstrated that modified analogs of ACV and PCV are less active compared to the initial substances against HSV-1and HSV-2. CC50 for ganciclovir-deoxycholate corresponded to the CC50 of the other analogs and its activity is lower than ganciclovir. Obtained results show that tested modification do not improve bioavailability of nucleoside analogs in cells.  相似文献   

16.
The herpes simplex virus type 1 thymidine kinase (HSV-1 TK) is the major anti-herpes virus pharmacological target, and it is being utilized in combination with the prodrug ganciclovir as a toxin gene therapeutic for cancer. One active-site amino acid, glutamine-125 (Gln-125), has been shown to form hydrogen bonds with bound thymidine, thymidylate, and ganciclovir in multiple X-ray crystal structures. To examine the role of Gln-125 in HSV-1 TK activity, three site-specific mutations of this residue to an aspartic acid, an asparagine, or a glutamic acid were introduced. These three mutants and wild-type HSV-1 TK were expressed in E. coli and partially purified and their enzymatic properties compared. In comparison to the Gln-125 HSV-1 TK, thymidylate kinase activity of all three mutants was decreased by over 90%. For thymidine kinase activity relative to Gln-125 enzyme, the K(m) of thymidine increased from 0.9 microM for the parent Gln-125 enzyme to 3 microM for the Glu-125 mutant, to 6000 microM for the Asp-125 mutant, and to 20 microM for the Asn-125 mutant. In contrast, the K(m) of ganciclovir decreased from 69 microM for the parent Gln-125 enzyme to 50 microM for the Asn-125 mutant and increased to 473 microM for the Glu-125 mutant. The Asp-125 enzyme was able to poorly phosphorylate ganciclovir, but with nonlinear kinetics. Molecular simulations of the wild-type and mutant HSV-1 TK active sites predict that the observed activities are due to loss of hydrogen bonding between thymidine and the mutant amino acids, while the potential for hydrogen bonding remains intact for ganciclovir binding. When expressed in two mammalian cell lines, the Glu-125 mutant led to GCV-mediated killing of one cell line, while the Asn-125 mutant was equally as effective as wild-type HSV-1 TK in metabolizing GCV and causing cell death in both cell lines.  相似文献   

17.
Human deoxycytidine kinase (dCK) is a key enzyme in the 5'-phosphorylation of purine and pyrimidine deoxynucleosides with deoxycytidine as the most efficient substrate. The ability of dCK to degrade 2'-deoxyribonucleosides to free nucleobases and 2-deoxy-alpha-d-ribofuranose-1-phosphate was demonstrated by 1H-31P correlation spectroscopy and by isotope enzyme kinetic methods. The reaction depended on inorganic phosphate, and dCK showed maximum cleavage activity between pH 7 and pH 8. In this pH range, [HPO4(2-)] is the dominant phosphate species, most likely being the phosphate donor. All natural deoxyribonucleosides could be cleaved and the Vmax of the phosphorylytic reaction compared to the kinase reaction was about 2-10%. The formation of free nucleobases occurred only with reduced dCK, because the reaction was highly dependent on the presence of reducing agents such as dithiotreitol. Thus, recombinant dCK can act as a phosphorylase, similar to the nucleoside phosphorylase family of enzymes. This catalytic activity is important for the design of in vitro experiments with dCK, such as crystallization and NMR spectroscopy.  相似文献   

18.
Abstract

A series of antiherpetic 5-substituted 2′-deoxyuridine derivatives (i. e. BVDU) and guanine derivatives (i. e. ganciclovir) have been evaluated for their cytostatic activity against murine mammary carcinoma FM3A cell lines that are deficient in cytosol thymidine kinase, but transfected by the herpes simplex virus type 1 (HSV-1)- or type 2 (HSV-2)-specified thymidine kinase gene. Most compounds were endowed with a markedly higher cytostatic activity against the HSV TK gene-transfected tumor cells than against wild-type tumor cells. The principal target for cytostatic activity of the BVDU derivatives proved thymidylate synthase, whereas the guanine derivatives inhibited HSV TK gene-transfected tumor cell proliferation by competing with cellular DNA polymerase(s) and subsequent incorporation into the cellular genome.

  相似文献   

19.
Simian varicella virus (SVV) and human varicella-zoster virus (VZV) are closely related viruses that share many structural and functional properties. 5-Substituted 2'-deoxyuridine derivatives (e.g., BVDU, BVaraU) and acyclic guanine nucleoside derivatives (i.e., ACV and GCV) show comparable antiviral efficacy against VZV and SVV in cell culture. In contrast, the novel bicyclic nucleoside analogues (BCNAs) are exquisitely inhibitory to VZV (EC50 in the lower nanomolar range) but completely inactive against SVV. The VZV-encoded thymidine kinase (TK) appeared to be essential for BCNA activation (phosphorylation) and anti-VZV activity. Also SVV TK is able to recognize the BCNAs as substrate, although with a different structure-affinity relationship. Thus, viral TK-catalyzed phosphorylation is necessary but not sufficient for the BCNAs to display antiviral activity. Our data suggest that the eventual target of the BCNAs against VZV is either absent in SVV or, alternatively, is insensitive for the (phosphorylated) BCNAs.  相似文献   

20.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substrates for the recombinant cellular deoxynucleoside kinases. The cytosolic thymidine kinase exhibited a strict selectivity and phosphorylated only beta-D-Thd, while the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) as well as dCK all had broad substrate specificities. TK2 phosphorylated Thd and dCyd stereoisomers in the order: beta-D- > or = beta-L- > alpha-D- > or = alpha-L-isomer. dCK activated both enantiomers of beta-dCyd, beta-dGuo, and beta-dAdo with similar efficiencies, and alpha-D-dCyd also served as a substrate. dGK phosphorylated the beta-dGuo enantiomers with no preference for the ribose configuration; alpha-L-dGuo was also phosphorylated, and beta-L-dAdo and beta-L-dCyd were substrates but showed reduced efficiencies. The anomers of the 2',3'-dideoxy-D-nucleosides (ddNs) were tested, and TK2 and dCK retained their low selectivities. Unexpectedly, alpha-dideoxycytidine (ddC) was a 3-fold better substrate for dCK than beta-ddC. Similarly, alpha-dideoxythymidine (ddT) was a better substrate for TK2 than beta-ddT. dGK did not accept any D-ddNs. Thus, TK2, dCK, and dGK, similar to herpes simplex virus type 1 thymidine kinase (HSV-1 TK), showed relaxed stereoselectivities, and these results substantiate the functional similarities within this enzyme family. Docking simulations with the Thd isomers and the active site of HSV-1 TK showed that the viral enzyme may in some respects serve as a model for studying the substrate specificities of the cellular enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号