首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Echistatin is a 49-amino-acid protein fromEchis carinatus venom. It contains four disulfide bonds. Since the disulfide bonding is critical for biological activity, it is very important to assign the disulfide linkage in this protein. Echistatin was incubated in 250 mM oxalic acid at 100°C for 4 hr under nitrogen. Under these conditions, many overlapping disulfide-containing peptides were identified by ionspray mass spectrometry. Ionspray MS/MS data indicate that the four disulfide bonds are Cys 2–Cys 11, Cys 7–Cys 32, Cys 8–Cys 37, and Cys 20–Cys 39. To our knowledge, this is the first time all four disulfide bonds in echistatin have been assigned in one experiment without disulfide bond exchange. This approach, which combines oxalic acid hydrolysis and ionspray MS/MS, may be very useful for assigning disulfide bridges in other proteins from the disintegrin family.  相似文献   

2.
A rapid and sensitive method for assignment of disulfide bonds using fast atom bombardment mass spectrometry is described for hen egg white lysozyme and bovine ribonuclease A. The protein is initially digested to a mixture of peptides using chemical and enzymatic methods under conditions which minimize disulfide bond reduction and exchange. The digested sample is analyzed directly by fast atom bombardment mass spectrometry before and after chemical reduction of cystine residues. An important feature of the method is that it is not necessary to completely resolve the peptides in the digest chromatographically prior to analysis. The disulfide-containing peptides are also characterized directly by prolonged exposure of the sample to the high energy xenon atom beam which results in the reduction of cystine residues. Intra- as well as interchain disulfide bond assignments are made on the basis of the mass difference between the molecular ions (MH+) of the oxidized and reduced peptides. Confirmation of the mass assignments may be obtained from the mass spectra of the digests after one cycle of manual Edman degradation. Although the quantity of protein required to unambiguously assign all of the disulfide linkages will depend on the ease with which the appropriate peptide fragments can be formed, results from these studies indicate that approximately 1 nmol of protein is usually sufficient.  相似文献   

3.
In addition to reducing the analysis time, the direct examination of proteolytic digests by fast atom bombardment mass spectrometry (FABMS) greatly extends the information that is available from peptide mapping experiments. Mass spectral data are particularly useful for identifying post-translationally modified peptides. For example, the molecular weight of a disulfide-containing peptide may be used to locate the disulfide bond in the protein from which the peptide was derived. This paper describes a new procedure, which is useful for identifying disulfide-bonded peptides. Peptides are treated with performic acid to modify certain residues and thereby cause a characteristic change in the peptide molecular weight. This change in molecular weight is determined by FABMS and used to help identify peptides. Results for a series of small peptides demonstrate that Cys, Met, and Trp are the only residues that undergo a change in molecular weight under the conditions used here. Furthermore, these changes in molecular weight are diagnostic for each of the residues. Cysteinyl-containing peptides are of particular interest, because their identification is essential for locating disulfide bonds. The molecular weight of a peptide increases by 48 mu for each cysteinyl residue present. This approach is used to identify peptides that contain both cysteinyl and cystinyl residues in the peptic digest of bovine insulin. The method is extended to the analysis of a tryptic digest of cyanogen bromide-treated ribonuclease A. A computer-assisted analysis procedure is used to demonstrate the specificity with which peptide molecular weight is related to specific segments of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The disulfide bonds in gamma-46 gliadin were identified: Cys173--Cys192, Cys212--Cys291, Cys165--Cys199 (or Cys200), Cys283--Cys200 (or Cys199). The disulfide-containing peptides were obtained by limited hydrolysis of the intact protein with chymotrypsin at an enzyme/substrate ratio of 1:1000 at 20 degrees C for 22 h with subsequent digestion of disulfide-containing fragments with trypsin and chymotrypsin. The locations of disulfide bonds were determined by sequencing disulfide-containing fractions and constituent peptides and comparison of the obtained sequences with the partial amino acid sequence of gamma-46 gliadin determined earlier.  相似文献   

5.
The disulfide bond bridge is an important post-translational modification for proteins. This study presents a structural analysis of biologically active peptides and proteins containing disulfide bonds using electrochemistry (EC) online combined with desorption electrospray ionization mass spectrometry (DESI-MS), in which the sample undergoes electrolytic disulfide cleavage in an electrochemical flow cell followed by MS detection. Using this EC/DESI-MS method, the disulfide-containing peptides can be quickly identified from enzymatic digestion mixtures, simply based on the abrupt decrease in their relative ion abundances after electrolysis. Peptide mass mapping and tandem MS analysis of the ions of the resulting free peptide chains can possibly establish the disulfide linkage pattern and sequence the precursor peptides. In this regard, the method provides much more chemical information than previous analogous electrochemical analyses. In addition, derivatization of thiols by selective selenamide reagents is useful for easy recognition of reduced peptide ions and the number of their free thiols. Furthermore, electrolytic reduction of proteins (e.g., α-lactalbumin) leads to increased charges on the detected protein ions, revealing the role of disulfide bonds on maintaining protein conformation. This electrochemical mass spectrometric method is fast (completed in few minutes) and does not need chemical reductants, potentially having valuable applications in proteomics research.  相似文献   

6.
Primary structure of macromomycin, an antitumor antibiotic protein   总被引:1,自引:0,他引:1  
The antitumor protein macromomycin is a single chain polypeptide of 112 amino acid residues cross-linked by two intramolecular disulfide bonds. The protein was reduced and S-alkylated with 2-mercaptoethanol in 8 M urea followed by treatment with iodoacetic acid. Tryptic digestion of tetra-S-carboxymethyl macromomycin gave four tryptic peptides which were fractionated by gel permeation on Sephadex G-50. The amino acid sequence of the tryptic peptides and the overlap sequences were determined by a combination of automated Edman degradation analysis, gas chromatographic mass spectrometry, and fast atom bombardment mass spectrometry. A comparison of the structures of macromomycin, actinoxanthin, and neocarzinostatin suggests that they belong to a family of related proteins.  相似文献   

7.
Amino acid sequence of a lectin from Japanese frog (Rana japonica) eggs   总被引:2,自引:0,他引:2  
The complete amino acid sequence and the location of disulfide bonds of a lectin from Japanese frog (Rana japonica) eggs, which specifically agglutinates transformed cells, are presented. The sequence was determined by analysis of peptides generated by digestion of the S-carboxyamidomethylated protein with Achromobacter protease I, or chymotrypsin, and by chemical cleavage with BNPS-skatole or cyanogen bromide. The lectin is a single-chain protein consisting of 111 residues, with a pyroglutamyl residue at the amino terminus. Four disulfide bonds link half-cystinyl residue 19 to 72, 34 to 82, 52 to 97, and 94 to 111. The sequence and the location of the disulfide bonds are highly homologous to those of bull frog (Rana catesbeiana) egg S-lectin. They are also homologous to human angiogenin, a tumor angiogenesis factor, and a family of pancreatic ribonucleases.  相似文献   

8.
This paper describes a simple biomimetic strategy to prepare small cyclic proteins containing multiple disulfide bonds. Our strategy involves intramolecular acyl transfer reactions to assist both the synthesis and fragmentation of these highly constrained cyclic structures in aqueous solution. To illustrate our strategy, we synthesized the naturally occurring circulin B and cyclopsychotride (CPT), both consisting of 31 amino acid residues tightly packed in a cystine-knot motif with three disulfide bonds and an end-to-end cyclic form. The synthesis of these small cyclic proteins can be achieved by orthogonal ligation of free peptide thioester via the thia zip reaction, which involves a series of reversible thiol-thiolactone exchanges to arrive at an alpha-amino thiolactone, which then undergoes an irreversible, spontaneous ring contraction through an S,N-acyl migration to form the cyclic protein. A two-step disulfide formation strategy is employed for obtaining the desired disulfide-paired products. Partial acid hydrolysis through intramolecular acyl transfer of X-Ser, X-Thr, Asp-X, and Glu-X sequences is used to obtain the assignment of the circulins disulfide bond connectives. Both synthetic circulin B and CPT are identical to the natural products and, thus, the total synthesis confirms the disulfide connectivity of circulin B and CPT contain a cystine-knot motif of 1-4, 2-5, and 3-6. In general, our strategy, based on the convergence of chemical proteolysis and aminolysis of peptide bonds through acyl transfer, is biomimetic and provides a useful approach for the synthesis and characterization of large end-to-end cyclic peptides and small proteins.  相似文献   

9.
The NADPH-dependent enzymic reduction of disulfide bonds in human choriogonadotropin and its two subunits, alpha and beta, was examined with thioredoxin and thioredoxin reductase from Escherichia coli. With 12 muM thioredoxin and 0.1 muM thioredoxin reductase at pH 7 all disulfide bonds in the alpha subunit could be reduced in 15 min. The reduction of disulfide bonds was recorded by a simple spectrophotometric assay at 340 nm, which allowed quantitation of the reduction rate and the number of disulfide bonds reduced. Partial reduction of the alpha subunit with thioredoxin followed by S-carboxymethylation with iodol[2-3H]acetic acid and analysis of tryptic peptides indicated that all S-S bonds in the alpha subunit were surface oriented and equally reactive. The usefulness of thioredoxin reduction of disulfide bonds as a chemical probe of protein structure was shown by the much slower reaction of disulfide bonds in the intact hormone as compared to its two biologically inactive subunits.  相似文献   

10.
A simplified strategy is described for the assignment of disulfide bonds in proteins of medium to high molecular mass (10-30 kDa). The method combines the use of high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) and HPLC with UV diode-array detection (HPLC diode array). The denatured protein is subjected to proteolysis and the peptide mixture is divided into three fractions: (i) underivatized peptides, (ii) ethylpyridylated peptides, and (iii) reduced and ethylpyridylated peptides. The three peptide ensembles are then subjected to chromatographic and spectroscopic analysis. A systematic methodology is described to analyze the large amount of data obtained. The method was applied to the localization of disulfide bonds in alpha-L-fucosidase from pea. The two disulfide bonds were located between residues Cys64 and Cys109 and between Cys162 and Cys169, while Cys127 was free.  相似文献   

11.
Recombinant human osteoprotegerin chimera is a 90-kDa protein containing a human IgG Fc domain fused to human osteoprotegerin. The molecule is a dimer linked by two intermolecular disulfide bonds and contains eleven intramolecular disulfide bonds per monomer. A cysteine-rich region in osteoprotegerin contains nine disulfide bridges homologous to the cysteine-rich signature structure of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. In this report, we have developed peptide mapping procedures suitable to generate disulfide-containing peptides for disulfide structure assignment of the fusion molecule. The methods employed included proteolytic digestion using endoproteinases Glu-C and Lys-C in combination followed by LC-MS analyses. Disulfide linkages of peptide fragments containing a single disulfide bond were assigned by sequence analysis via detection of (phenylthiohydantoinyl) cystine and/or by MS analysis. Disulfide bonds of a large, core fragment containing three peptide sequences linked by four disulfides were assigned after generation of smaller disulfide-linked peptides by a secondary thermolysin digestion. Disulfide structures of peptide fragments containing two disulfide bonds were assigned using matrix-assisted laser desorption ionization mass spectrometry with postsource decay. Both the inter- and intramolecular disulfide linkages of the chimeric dimer were confirmed.  相似文献   

12.
The disulfide peptides from the tryptic digestion of cyanogen bromide-treated hen egg white lysozyme (HEWL) were isolated by reverse phase high performance liquid chromatography (HPLC) and identified by amino acid analysis. Three peptides containing the I-VIII, II-VII, and III-V + IV-VI disulfide bonds were obtained. The two-disulfide peptide was further digested with proline-specific endopeptidase (PCE) (EC 3.4.21.26). Amino acid analysis of digest peptides separated by HPLC showed four peptides with the IV-VI disulfide bond as well as a peptide with the III-V disulfide bond. The IV-VI peptides were produced by hydrolysis of several alanine-X bonds as well as the prolyl-cystine bond. Our studies show that alanyl peptide bonds to lysyl, seryl, and leucyl residues are susceptible to hydrolysis by PCE preparations, thus substantially extending its known specificity range. The two-disulfide peptide was also digested sequentially with thermolysin and PCE; the resulting IV-VI and III-V peptides were identified by HPLC and amino acid analysis. PCE showed substantial activity at pH 5.3 as well as at pH 8.3. The lower pH is useful in studies of proteins or peptides where base-catalyzed reactions must be limited.  相似文献   

13.
A previously described technique [Rose, Simona, Offord, Prior, Otto & Thatcher (1983) Biochem. J. 215, 273-277] permits the identification of the C-terminal peptide of a protein as the only peptide that does not incorporate any 18O upon partial enzymic hydrolysis in 18O-labelled water. Formation of chemical derivatives followed by combined g.l.c.-m.s. was used in this earlier work. We now describe the isolation from protein digests, by reversed-phase h.p.l.c., of labelled and unlabelled polypeptides and their direct analysis by fast atom bombardment mass spectrometry. Under the conditions used, the 18O label is retained throughout the separation and analysis, thus permitting assignments of C-terminal peptides to be made. Enzyme-catalysed exchange of label into the terminal carboxy group was found to occur in some cases without hydrolysis of a peptide bond. This effect, which may be exploited to prepare labelled peptides, does not prevent application of the method (two separate digests must then be used). We have applied our method to the analysis of enzymic partial hydrolysates of glucagon, insulin and of several proteins produced by expression of recombinant DNA.  相似文献   

14.
The thermostable sweet protein brazzein consists of 54 amino acid residues and has four intramolecular disulfide bonds, the location of which is unknown. We found that brazzein resists enzymatic hydrolysis at enzyme/substrate ratios (w/w) of 1:100-1:10 at 35–40°C for 24–48 h. Brazzein was hydrolyzed using thermolysin at an enzyme/substrate ratio of 1:1 (w/w) in water, pH 5.5. for 6 h and at 50°C. The disulfide bonds were determined, by a combination of mass spectrometric analysis and amino acid sequencing of cystine-containing peptides, to be between Cys4-Cys52, Cys16-Cys37, Cys22-Cys47, and Cys26-Cys49. These disulfide bonds contribute to its thermostability. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The antifreeze polypeptide (AFP) from the sea raven, Hemitripterus americanus, is a member of the cystine-rich class of blood antifreeze proteins which enable survival of certain fishes at sub-zero temperatures. Sea raven AFP contains 129 residues with 10 half-cystine residues. We have analyzed these half-cystine residues and established that all 10 of the half-cystine residues appeared to be involved in disulfide bond formation and that disulfide bonds linked Cys7 to Cys18, Cys35 to Cys125, and Cys89 to Cys117. These assignments were established by extensive proteolytic digestions of native AFP using pepsin and thermolysin and purification of the peptides by Sephadex G-15 gel filtration chromatography, anion exchange chromatography, and C18 reverse-phase high performance liquid chromatography. Cystine-containing peptides were detected by a colorimetric assay using nitrothiosulfobenzoate. Disulfide-containing peptides were reduced and alkylated, purified, and analyzed by amino acid analysis. The unreduced disulfide-linked peptides were sequenced directly by automated Edman degradations to confirm the disulfide assignments. Possible arrangements of the two remaining disulfide bonds include linkages Cys69/111 to Cys100/101. The sea raven AFP shares structural similarity with pancreatic stone protein and several lectin-binding proteins, especially with respect to half-cystines, glycines, and bulky aromatic residues. Two of the disulfide linkages we determined for sea raven AFP: Cys7-Cys18 and Cys35-Cys125, are conserved in these proteins. These similarities in covalent structure suggest that the sea raven AFP, pancreatic stone protein, and several lectin-binding proteins comprise a family of proteins which may possess a common fold.  相似文献   

16.
Variant semisynthetic ribonuclease-S complexes were characterized in which the helical glutamic acid 9 residue was replaced by either leucine or glycine. The Leu-9 and Gly-9 synthetic peptides, corresponding otherwise to residues 1 through 15 of bovine pancreatic ribonuclease, were studied with respect to the ability to bind, and generate enzymic activity, with the complementary native protein fragment containing residues 21 through 124 of ribonuclease (RNAase-S-(21–124)). Both the Leu and Gly peptides bind to the RNAase-S-(21–124) to yield complexes with catalytic properties similar to those obtained with the Glu-9-containing peptide of residues 1 through 20 of ribonuclease (RNAase-S-(1–20)). However, whereas the binding affinity of Leu peptide to RNAase-S-(21–124) is only a factor of three less than that for RNAase-S-(1–20), that for Gly peptide is about 20-fold less than that for RNAase-S-(1–20). The stronger binding of Leu than Gly peptide corresponds to the observed propensity of leucine but not glycine for the α-helical conformation in globular proteins.In spite of the weakened affinity of the Gly peptide for RNAase-S-(21–124), it is essentially fully as capable as the Leu-9 and RNAase-S-(1–20) peptides in directing the re-formation of correct disulfide-containing conformation of RNAase-S-(21–124) after disulfide randomization of the latter.  相似文献   

17.
A new database search algorithm has been developed to identify disulfide-linked peptides in tandem MS data sets. The algorithm is included in the newly developed tandem MS database search program, MassMatrix. The algorithm exploits the probabilistic scoring model in MassMatrix to achieve identification of disulfide bonds in proteins and peptides. Proteins and peptides with disulfide bonds can be identified with high confidence without chemical reduction or other derivatization. The approach was tested on peptide and protein standards with known disulfide bonds. All disulfide bonds in the standard set were identified by MassMatrix. The algorithm was further tested on bovine pancreatic ribonuclease A (RNaseA). The 4 native disulfide bonds in RNaseA were detected by MassMatrix with multiple validated peptide matches for each disulfide bond with high statistical scores. Fifteen nonnative disulfide bonds were also observed in the protein digest under basic conditions (pH = 8.0) due to disulfide bond interchange. After minimizing the disulfide bond interchange (pH = 6.0) during digestion, only one nonnative disulfide bond was observed. The MassMatrix algorithm offers an additional approach for the discovery of disulfide bond from tandem mass spectrometry data.  相似文献   

18.
Rapeseed proteins were processed by an enzyme complex isolated from king crab hepatopancreas in order to obtain a hydrolysate for use as fish fry feed. The amino acid composition of the obtained protein preparation was close to the amino acid composition of fishmeal traditionally used in the production of fish feed. SDS-PAGE, HPLC, and mass spectrometric analysis of the products of enzymatic hydrolysis of rapeseed proteins showed that the proteins were hydrolyzed to a high degree. The composition of the hydrolysates depended on the hydrolysis time and included free amino acids (27% of the total weight of the protein mix after 3 h of hydrolysis and 56% after 21 h of hydrolysis), short peptides (2 to 20 amino acid residues), and small amounts of protein fragments with a molecular weight of approximately 14 kDa, as shown by by SDS-PAG electrophoresis.  相似文献   

19.
Rabbit light chain 3315, prepared from a homogeneous antipneumococcal antibody, was subjected to hydrolysis by pepsin without prior reduction and alkylation of the intrachain disulfide bonds. Gel filtration of the hydrolysate on Sephadex G-10, G-15, and G-25 and ion exchange chromatography on SP-Sephadex yielded several disulfide bridge peptides. These were fully reduced and alkulated and sequenced by Edman degradation. The peptides were located in the light chain sequence determined in independent studies from our laboratory. The half-cystine residues in this KB rabbit chain are located at positions 23, 80, 88, 134, 171, 194, and 214. The extra disulfide bridge extends between residues 80 and 171, thus joining the variable and constant domains. This is consistent with x-ray diffraction crystallographic studies showing that the corresponding residues in human light chains are separated by a distance compatible with disulfide bond formation.  相似文献   

20.
The pairing of the four intrachain disulfide bonds of bovine seminal ribonuclease, a dimeric protein isolated from bovine seminal plasma, has been established by the isolation and characterization of the cystine peptides obtained from a thermolytic-tryptic hydrolysate of the protein. These disulfide bonds involve eight half-cystine residues located in the protein subunit chain at sequence positions identical with those of the eight half-cystine residues of the strictly homologous chain of bovine pancreatic ribonuclease. The results reported show that these eight 'homologous' half-cystine residues pair in seminal ribonuclease exactly as they do in pancreatic ribonuclease. They also indirectly confirm that the remaining two half-cystine residues present in each chain of the seminal enzyme are involved in intersubunit bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号