首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of nickel(II) and cobalt(II) complexes, NiX2L (X = Cl, Br; 1-6) and CoCl2L (7-9), with 2,9-diaryl-1,10-phenanthroline ligands (L1-L3) have been synthesized and characterized by elemental analysis, UV-Vis, IR spectroscopy, and X-ray crystal structural study (for 1, 4-7, 9). The solid-state structures of 1, 5-7 and 9 show four-coordinate, slightly flattened tetrahedral geometry at the Ni(II) or Co(II) center, while 4 is five-coordinated (square-pyramidal), containing a THF molecule as an auxiliary ligand. The title complexes (1-9) display good catalytic activities in ethylene oligomerization when activated with methylaluminoxane (MAO). While the Co(II) precatalysts produce primarily C4 isomers, the Ni(II) complexes give ethylene dimers and trimers at normal pressure. The activities and yields of linear α-olefins increase with increasing ethylene pressure for the Ni(II) complexes, leading to more high-molar-mass products (C8-C18). Complex 6 displays the best catalytic activity among the complexes studied (up to 1518 kg/mol[Ni] h at 10 atm).  相似文献   

2.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

3.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

4.
In situ reaction of the aminobenzoic acids 2-aminobenzoic acid and 3,5-diaminobenzoic acid with salicylaldehyde provide easy access to the ligands 2-[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L1) and 3,5-bis[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L2). Addition of a Fe(II) or Cu(II) salt to the solution of the ligand yields the corresponding Fe and Cu complexes. The species synthesized have been structurally characterized by single-crystal X-ray diffraction. The Fe(II) complex [Fe(L1)(MeOH)3] (1) crystallizes in the triclinic space group . The Cu(II) complex [Cu(L1)] (2) is a one-dimensional chain and crystallizes in the monoclinic space group P21. The Cu(II) complex [Et3NH]2[Cu2(L2)2] (3) crystallizes in the monoclinic space group P21/n. The magnetic properties of 1, 2 and 3 have been studied, showing that the Cu(II) ions of 2 and 3 are ferromagnetically coupled. Complexes 1 and 3 have strong potential as metal-bearing building blocks for the synthesis of metal-organic frameworks.  相似文献   

5.
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1-3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C-H?O contacts. In contrast to polymers 1-3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C-H?O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.  相似文献   

6.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

7.
《Inorganica chimica acta》2009,362(14):5085-524
New, heteroleptic zinc and cobalt complexes with tri-tert-butoxysilanethiolate and imidazole co-ligands are characterized by crystal structure studies. The ligands exhibit different coordination modes to Co(II) ions: NOS2 (with methanol as O-donor ligand) in 2, NO2S2 in 2′′, N2S2 in 1, and to Zn(II) ions: N2S2 in 3 and N3S in 4. Complex 2′ is a structural analog of cobalt-substituted active site of alcohol dehydrogenase. All four-coordinate Co(II) and Zn(II) complexes have tetrahedral geometry. Solution and solid state electronic spectra of cobalt(II) complexes are discussed and compared to literature data available for the cobalt-substituted liver alcohol dehydrogenase and sorbitol dehydrogenase. The EPR spectra of all cobalt complexes exhibit at 77 K a characteristic broad signal with g ∼3.6 and 5.6, strongly indicating a high-spin state, S = 3/2, of Co(II) complexes.  相似文献   

8.
The cobalt(II) complexes [Co(TPA)Cl]ClO4 (1), [Co(TPA)Br]ClO4 (2), [Co(TPA)(H2O)]Cl(ClO4) (3) and [Co2(TPA)2(μ-tp)](ClO4)2 · 2H2O (4) (TPA = tris(2-methylpyridyl)amine and tp = terephthalate dianion) were synthesized and structurally characterized by UV-vis and IR spectroscopy. The molecular structures of complexes 1 and 4 were determined by X-ray crystallography and their magnetic properties were measured over the temperature range 2-300 K. The coordination geometry around the central Co(II) in these compounds has a distorted trigonal bipyamidal geometry with four nitrogen atoms from the TPA ligand and the fifth coordination site is occupied by Cl ion in 1, Br ion in 2, coordinated oxygen atom from H2O in 3 and by an oxygen atom supplied by the carboxylate group of the bridged terephthalato ligand in 4. The visible spectra of the complexes 1-3 in MeOH show strong distortion toward tetrahedral geometry. For complex 4, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(monodentate) coordination mode for the bridged tp. X-ray data for 1 and 4 show that the former is mononuclear while the latter is dinuclear. The electronic spectrum of 4 in MeOH is in complete agreement with the assigned X-ray geometry around the Co(II) centers. The magnetic behavior of the mononuclear complex 1 is indicative of a high-spin compound with zero-field splitting. The best fit was obtained with ∣D∣ = 7.3 cm−1, g = 2.25. The dinuclear complex 4 exhibits weak antiferromagnetic coupling with a coupling constant J = −0.8 cm−1. The magnetic properties and the structural parameters of 4 are discussed in relation to the other related μ-terephthalato dinuclear Co(II) compounds. The geometry of the coordination sphere around 4 is unique - the CSD compilation listing only one other compound with such a geometry around the dinuclear Co(II) complex and its composition is far different from that in 4. However, they share a common feature of having a weakly antiferromagnetic coupling between Co(II) centers.  相似文献   

9.
A new easily synthetic route with a 96% yield of ligand 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethanol (L) is obtained. The reactivity of L against Pd(II), Zn(II) and Cu(II) leads to [PdCl2(L)2] (1), [ZnCl2(L)] (2) and [CuCl(L′)]2 (3) (L′ is the ligand L without alcoholic proton), respectively. According to the different geometries imposed by the metallic centre and the capability of L to present various coordination links, it has been obtained complexes with square planar (1 and 3) or tetrahedral (2) geometry and different nuclearity: monomeric (1 and 2) or dimeric (3). Complete characterisation by analytical and spectroscopic methods, resolution of L and 1-3 by single-crystal X-ray diffraction and magnetic studies for complex 3 are presented.  相似文献   

10.
A new series of chiral carboxylate-bridged complexes of Mn(II), Co(II), and Ni(II) has been synthesized by reaction of M(II) salts with (S)-2-hydroxy-2-methyl-butanedioic acid ((S)-citramalic acid) under solvothermal conditions. The Mn(II) compound 1 is obtained as a crystalline powder, whereas the Co(II) and Ni(II) compounds (2 and 3 respectively) are obtained as single crystals. All the compounds crystallize in orthorhombic chiral space group P212121. Compounds 2 and 3 are isostructural, and their structure consists in helicoïdal chains of M(II) centres linked by carboxylate bridges. The magnetic data indicate a rather weak coupling interaction between paramagnetic centres. The Mn(II) compound 1 exhibits antiferromagnetic ordering at TN = 2.64 K. The Co(II) and Ni(II) compounds show ferromagnetic interactions within the chains. For 3, the chains couple antiferromagnetically, which leads to a metamagnetic behaviour with TN = 1.69 K.  相似文献   

11.
Two new three-dimensional azido-bridged Co(II) compounds with formula [Co(N3)2(2,5-Me2pyz)]n (1) and [Co(N3)2(2-ampym)]n (2) have been structurally and magnetically characterized. 2,5-Me2pyz and 2-ampym are 2,5-dimethylpyrazine and 2-aminopyrimidine, respectively. Compound 1 crystallizes in the monoclinic system with space group P21/c and compound 2 in the orthorhombic system with space group Pnma. In 1 and 2 each cobalt atom is linked to the four nearest-neighbors by end-to-end (EE) azido bridges, forming square layers. These layers are further connected to 3D networks by the N,N′-bridging ligands 2,5-dimethylpyrazine or 2-aminopyrimidine. The magnetic properties of 1 and 2 are reported. The plots of χM or χMT for 1 and 2 show antiferromagnetic coupling.  相似文献   

12.
The reactions of six diimine ligands with Cu(II) and Ni(II) halide salts have been investigated. The diimine ligands were Ph2CN(CH2)nNCPh2 (n = 2 (Bz2en, 1a), 3 (Bz2pn, 1b), 4 (Bz2bn, 1c)), N,N′-bis-(2-tert-butylthio-1-ylmethylenebenzene)-2,2′diamino-biphenyl (2), N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,3-diaminobenzene (3) and N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,2-ethanediamine (4). Reactions of 1a-c, 2-4 with CuCl2·2H2O in dry ethanol at ambient temperature led to complete or partial hydrolysis of the diimine ligands to ultimately form copper diamine complexes. The non-hydrolyzed complexes of 1b and 1c, [Cu(L)Cl2] (L = 1b, 1c), could be isolated when the reactions were carried out at low temperatures, and the half-hydrolyzed complex [Cu(Bzpn)Cl2] could also be identified via X-ray crystallography. Similarly, reactions of 1a or 1b with NiCl2·6H2O or [NiBr2(dme)] led to rapid hydrolysis of the imines and Ni complexes containing half-hydrolyzed 1a (Bzen; [trans-[Ni(Bzen)2Br2]) and 1b (Bzpn; [Ni(Bzpn)Br2] could be isolated and identified via single crystal X-ray analysis. Kinetic studies were made of the hydrolyses of 1a, 1b in THF and 2 in acetone, in the presence of Cu(II), and of 1a in acetonitrile, in the presence of Ni(II). Activation parameters were determined for the latter reaction and for the copper-catalyzed hydrolysis of 2; the relatively large negative activation entropies clearly indicate rate-determining steps of an associative nature.  相似文献   

13.
New types of λ6-sulfanenitrile-transition metal complexes, [MCl2(ndsdsd)] (1) and [M(ndsdsd)2]Cl2 (2) (M = Co(II), Ni(II), Cu(II)), were obtained by reacting MCl2 with bis[(nitrilo(diphenyl)-λ6-sulfanyl)](diphenyl)-λ6-sulfanediimide Ph2S(N-(Ph2)SN)2 (ndsdsd). The crystal structures of these complexes have been elucidated by X-ray crystallographic analysis. The results revealed that, in complexes 1 and 2, the two terminal nitrogen atoms chelate to the metal center to form an eight-membered sulfur-nitrogen ring.  相似文献   

14.
1-Benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (1a) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (1b) were reacted with the hexahydrates of cobalt(II) chloride, cobalt(II) nitrate and cobalt(II) perchlorate to give the corresponding complexes 2a-4a and 2b-5b, respectively. Obtained compounds differ in coordination spheres of central atoms. The complex 2a includes a fivefold coordinated cobalt(II) ion, whereas 3a shows a distorted octahedral configuration around the cobalt(II) ion. All complexes were characterised by FTIR spectroscopy, MS and elemental analysis. The X-ray structures of 2a, 3a and 5b complexes were also solved. The cytotoxic properties of the ligand 1a and both series of Co(II) complexes were examined on human leukemia NALM-6 and HL-60 cells and melanoma WM-115 cells. The ligands, were found to have very low cytotoxicity. Complex 3b exhibited the highest cytotoxic activity with IC50 values in the range of 6.9-17.1 μM for three examined cell lines.  相似文献   

15.
Five-coordinate thiolato complexes, [L1M(SMeIm)] (M = Co and Ni) (L1 = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate anion and HSMeIm = 2-mercapto-1-methylimidazole), were synthesized. These complexes were compared with the corresponding Cu(II) and Zn(II) complexes with the same ligands and were also compared with the related four-coordinate complexes [L1M(SC6F5)] (HSC6F5 = pentafluorobenzenthiol). All the complexes were characterized by X-ray crystallography and UV-Vis absorption, IR, 1H NMR, and other spectroscopic techniques. All five-coordinate thiolato complexes, [L1M(SMeIm)] (M = Co, Ni, and Cu), form a distorted square pyramidal structure with a high spin state, and only [L1Zn(SMeIm)] takes a four-coordinate structure with a distorted tetrahedral configuration. The N21-M-S bond angles of the obtained five-coordinate complexes were proportional to the corresponding d value, which comes from between the equatorial basal plane with N4S ligand donor sets and metal ion. These observations and M-S bond distances affect on UV-Vis and far-IR spectral behavior.  相似文献   

16.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

17.
Synthesis and single crystal X-ray structures of the first paramagnetic transition metal complexes containing chiral ethylenedithio-tetrathiafulvalene-oxazoline (EDT-TTF-OX) 1a-c and ethylenedithio-tetrathiafulvalene-thiomethyloxazoline 2 (EDT-TTF-(SMe)OX) ligands based on copper (II) and cobalt (II) are described. The racemic [EDT-TTF-OX][Cu(hfac)2] complex 3a crystallizes in the triclinic centrosymmetric space group , whereas the enantiopure counterparts 3b-c crystallize in the triclinic non-centrosymmetric space group P1. Cu(II) adopts a distorted square pyramidal coordination geometry, a much weaker Cu?STTF interaction also being identified. The same coordination pattern around Cu(II) is observed in the complex [(rac)-EDT-TTF-(SMe)OX][Cu(hfac)2] (4) in spite of the bidentate nature of the redox active ligand. DFT theoretical calculations afforded two equilibrium configurations for a corresponding model complex, in which the metal centre establishes secondary coordination either with one STTF or with the SMe group. The same ligand coordinates the cobalt (II) to afford the octahedral complex [(rac)-EDT-TTF-(SMe)OX][Co(hfac)2] (5). In all these novel complexes, the paramagnetic centres are structurally and magnetically isolated. Cyclic voltammetry measurements show the stability of the radical cation species.  相似文献   

18.
Four novel coordination polymers, one-dimensional chains [M(PTE)2(N3)2]n (M = Mn for 1 and Co for 2), and two-dimensional layers [M(PTE)2(dca)2]n (M = Mn for 3 and Co for 4) (PTE = 1-(2,4-difluorophenyl-2-(1H-1,2,4-triazol-1-yl)ethanone, dca = dicyanamide anion, N(CN)2), have been synthesized under mild ambient conditions and structurally characterized by single crystal X-ray diffraction. In all four crystal structures, the metal atoms adopt octahedral coordination geometry with six nitrogen atoms from two monodentate PTE ligands and four azido (or dca) bridging ligands. The crystal structures of 1 and 2 are isostructural 1-D polymeric chains, alternatively linked by double end-on and double end-to-end azido bridges. However, the bent dca ligands as bidentate μ2-1,5 bridging ligands interlink the octahedral metal units to lead to 2-D (4,4) grid networks in 3 and 4. Temperature-dependent magnetic measurements in 2-300 K have been performed for these four polymers, and suggest alternative ferro- and antiferromagnetic couplings for end-on and end-to-end azido bridges in 1, and the dominant ferromagnetic coupling in 2, respectively. Both polymers 3 and 4 show weak antiferromagnetic exchanges through the μ2-1,5-dca bridges. The effects of auxiliary coligands on the structure and the nature of these magnetic exchanges are discussed in the light of the crystal structures in detail.  相似文献   

19.
Three complexes of composition [Co3(Hdcp)2(phen)3(H2O)2]n · nH2O (1), [Ni2(Hdcp)2(H2O)4](Im)2 (2) and [Cu2(Hpca)2(H2O)2(Im)2] (3) (H3dcp = 3,5-pyrazoledicarboxylic acid, H2pca = 1H-pyrazole-5-carboxylic acid, Im = imidazole and phen = 1,10-phenanthroline) have been synthesized via hydrothermal reactions and their structures have been characterized. Complex 1 is mainly constructed by Hdcp and ancillary ligand 1,10-phenanthroline and exhibits one-dimensional linear chain structure. Complexes 2 and 3 are pyrazolato-bridged dinuclear complexes. The ancillary imidazole ligand was not involved in the coordination and stacked to the lattice of the complex in 2. In the process of synthesis 3, imidazole ligand was coordinated to the metal centre; with one of the carboxylic group of the H3dcp ligand was eliminated to form [Cu2(Hpca)2(H2O)2(Im)2] (3) in situ. The results of magnetic susceptibility measurements indicate that there exist antiferromagnetic interactions between Co(II) and Ni(II) centres in compounds 1 and 2, respectively.  相似文献   

20.
One-dimensional (1-D) helical coordination polymers, [MII(H2O)3(BPDC)]n · nH2O (M = Co (1), Fe (2)), have been prepared by the self-assembly of cobalt(II) and iron(II) ions, respectively, with 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2BPDC) in an aqueous solution. X-ray crystal structures of compounds 1 and 2 show that each metal ion displays a distorted octahedral coordination geometry including three water oxygen atoms, one oxygen atom of the carboxylate of a BPDC2− belonging to the adjacent metal ion and two nitrogen atoms from the BPDC2− acting as a chelating ligand. In 1 and 2, one carboxylate oxygen atom of coordinated BPDC2− binds to the neighboring metal ion, which give rise to 1-D helical coordination polymers. The helical chains of 1 and 2 are linked by the hydrogen bonding interactions between the carboxylate oxygen atom of the BPDC2− ion belonging to a chain and the water molecule of the adjacent helical chain, which lead to 2-D networks extending along the ab plane. The supramolecules 1 and 2 show isomorphous structures regardless of the metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号