首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salts of the Fe(III) spin crossover cation [FeIII(qsal)2]+ (qsalH = N-(8-quinolyl)salicylaldimine) and monoanions [MIII(pds)2] (M = Cu, Au; pds = pirazine-2,3-diselenolate) with formula [FeIII(qsal)2][MIII(pds)2] were prepared and characterized by single crystal X-ray diffraction and magnetic measurements. These two salts present magnetic properties essentially due to the FeIII centres in the high-spin state (S = 5/2), and do not have any spin transition.  相似文献   

2.
The crystal structures of the C-H?O hydrogen-bonded, 1:1 complex salts of with [Ni(dmit)2] 2MMP, 3MMP and 4MMP (ortho-, meta-, and para-methoxycarbonyl N-methyl-pyridinium, respectively) cations with have been investigated. All complex salts formed non-segregated stacks with the anions being sandwiched between layers or dimers of cations. Within these salts, the arrangement of the counter cations are structurally modulated by two weak intermolecular hydrogen bonds between the hydrogen of the pyridinium ring, methyl group or one of the two and the CO group of the cations. The alignment of Ni(dmit)2 molecules is found to be mainly governed by the attached position of methoxycarbonyl group. Powders of (2MMP)[Ni(dmit)2], (3MMP)[Ni(dmit)2] and (4MMP)[Ni(dmit)2] salts exhibited room temperature conductivities of 4.33 × 10−10, 1.80 × 10−6 and 5.60 × 10−6 S cm−1, respectively.  相似文献   

3.
Reaction of [Ru2(O2CMe)4]Cl with K3[Cr(CN)5NO] in water forms Hx[RuII/III2(O2CMe)4]3−x-[Cr(CN)5NO]·zH2O (x = 0.2) that magnetically orders at 4.0 K and possesses an interpenetrating body centered cubic [a = 13.2509(2) Å] structure with random locations of the bridging nitrosyl ligands, and x/3 vacant cation sites. Similarly, the aqueous reaction of [Ru2(O2CMe)4]Cl with Na2[Fe(CN)5NO] forms paramagnetic [Ru2(O2CMe)4]2[Fe(CN)5NO]·H2O, which has a similar tetragonal interpenetrating structure [a = 13.0186(1) Å, c = 13.0699(2) Å] where the NO ligands are presumably nonbridging and 1/3 of the expected cation sites are unoccupied. The presence of uncoordinated NO sites in addition to missing neighboring [Ru2(O2CMe)4]+ units, results in significant vacancies (or holes) in the lattice.  相似文献   

4.
Two new molecular solids, [BzPyNH2][Ni(mnt)2](1) and [2-NpCH2PyNH2][Ni(mnt)2](2) (mnt2− = maleonitriledithiolate, [BzPyNH2]+ = 1-benzyl-2-aminopyridinium and [2-NpCH2PyNH2]+ = 1-(2′-naphthylmethylene)-2-aminopyridinium) have been characterized structurally and magnetically. The Ni(Ш) ions of 1 and 2 form a 1D magnetic chain within a [Ni(mnt)2] column through Ni?N or π?π interactions. Some weak interactions observed in 1 and 2 give further rise to a 2D structure. The overlapping fashions of the [Ni(mnt)2] anions are different when the 2-aminopyridine ring was fixed and the phenyl ring changed into the naphthyl ring of the cation. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 is weak antiferromagnetic coupling, while 2 exhibits a novel and interesting spin-gap transition around 140 K with Δ/kb = 381.4 K.  相似文献   

5.
Salts of [FeIII(sal2-trien)]+and [FeII(phen)3]2+ cations and M[(dcbdt)2] anions with M = Ni and Au (dcbdt = dicyanobenzenedithiolate) with formula [Fe(sal2-trien)] [M(dcbdt)2] and [Fe(phen)3] [M(dcbdt)2]2 were obtained and characterized by single X-ray diffraction and magnetic measurements. None of these salts shows a clear spin crossover behaviour and their magnetic properties are due essentially to the cations in a high spin S = 5/2 and low spin states for the FeIII and FeII salts respectively. The magnetic Ni sublattices in both compounds appear to have a negligible direct contribution to the magnetization but enhance the AF interactions in the cation sublattice.  相似文献   

6.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   

7.
The octanuclear cyano-bridged cluster [(Tp)8Fe4Ni4(CN)12] · H2O · 24CH3CN (1) (Tp = hydrotris(1-pyrazolyl)borate) showing magnetic properties of single-molecule magnet has been synthesized by reaction of [fac-Fe(Tp)(CN)3] with {(Tp)Ni(NO3)} species formed from an equimolar reaction mixture of Ni(NO3)2 · 6H2O and KTp in MeCN. The X-ray analysis of 1 shows molecular cube structure in which FeIII and NiII ions reside in alternate corners. The average intramolecular Fe?Ni distance is 5.124 Å. Out-of-phase ac susceptibility and reduce magnetization measurements show that 1 is a single molecule magnet with ground spin state S = 6 and spin reversal energy barrier U = 14 K. Magnetic hysteresis loops were also observed by applying fast sweeping field.  相似文献   

8.
Two closely related 1:1 salts are obtained upon electrocrystallization of BEDT-TTF (BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene) in the presence of the isosteric [M(tfadt)2] dithiolene complexes (tfadt: 1-trifluoromethyl-2-cyano-1,2-dithiolato), which essentially differ by their spin state, S = 0 in [Au(tfadt)2], S = 1/2 in [Ni(tfadt)2]. In both [BEDT-TTF][M(tfadt)2] salts, the BEDT-TTF radical cations form chains with a strong lateral overlap and strong antiferromagnetic interactions while the paramagnetic anions in the nickel-containing salt [BEDT-TTF][Ni(tfadt)2] are essentially non-interacting. The structural differences between the nickel and gold complexes are analyzed and discussed.  相似文献   

9.
New heterodinuclear ZnII/NiII (1) and homodinuclear NiII/NiII (2) water-soluble and air stable compounds of general formula [M(H2O)6][M′(dipic)2] · mH2O have been easily prepared by self-assembly of the corresponding metal(II) nitrates with dipicolinic acid (H2dipic) in water solution at room temperature.  The compounds have been characterized by IR, UV/Vis and atomic absorption spectroscopies, elemental and X-ray single crystal diffraction (for 1 · 4H2O and 2 · 5H2O) analyses.  3D infinite polymeric networks are formed via extensive hydrogen bonding interactions involving all coordinated and crystallization water molecules, and all dipicolinate oxygens, thus contributing to additional stabilization of dimeric units, metal-organic chains and 2D layers.  In 1 · 4H2O, the latter represent a rectangular-grid 2D framework with multiple channels if viewed along the c crystallographic axis, while in 2 · 5H2O intercalated crystallization water molecules are associated to form acyclic nonplanar hexameric water clusters and water dimers which occupy voids in the host metal-organic matrix, with a structure stabilizing effect via host-guest interactions.  The hexameric cluster extends to the larger (H2O)10 one with an unusual geometry (acyclic helical octamer with two pendent water molecules) by taking into account the hydrogen bonds to water ligands in [Ni(H2O)6]2+.  The obtained Zn/Ni compound 1 relates to the recently reported family of heterodimetallic complexes [M(H2O)5M′(dipic)2] · mH2O (M/M′ = Cu/Co, Cu/Ni, Cu/Zn, Zn/Co, Ni/Co, m = 2, 3), what now allows to establish the orders of the metal affinity towards the formation of chelates with dipicolinic acid (CoII > NiII > ZnII > CuII) or aqua species (CoII < NiII < ZnII < CuII).  相似文献   

10.
A facile route to the Fe2+-arene complex [(C6H6)FeCp][AlBr4] is the reaction of ferrocene with AlBr3 in benzene. The structure of the Fe2+-arene complex [(C6H6)FeCp][AlBr4] · C6H6 was found to be isomorphous with those of [FeCp2][ECl4] · C6H6 (E = Al, Ga). The crystal structures of the [FeCp2][AlCl4] · C6H6 (E = Al, Ga) presented here show structural features which are different from those of solvent-free ferrocenium salts [FeCp2][ECl4] (E = Al, Ga, Fe). However, the cell parameters of solvent-free ferrocenium tetrafluoroborate [FeCp2][BF4] are also quite different from those of solvent-free [FeCp2][ECl4] (E = Al, Ga, Fe). In contrast to the eclipsed conformation in solvent-free [FeCp2][ECl4] (E = Al, Ga, Fe) the cyclopentadiene rings in [FeCp2][BF4] and [FeCp2][ECl4] · C6H6 (E = Al, Ga) are in a staggered conformation.  相似文献   

11.
The orthorhombically crystallizing salts Rb2[B12(OH)12]·2H2O (= 1576.81(9), b = 813.08(5), c = 1245.32(7) pm) and Rb2[B12(OH)12]·2H2O2 (= 1616.54(9), b = 814.29(5), c = 1260.12(7) pm) could be prepared from Rb2[B12H12] and hydrogen peroxide. Both crystal structures were determined by X-ray single crystal diffraction and refined in the space group Cmce. They are not isostructural to the other compounds containing icosahedral dodecahydroxo-closo-dodecaborate dianions [B12(OH)12]2− and potassium, rubidium or cesium cations already known to literature, but both title compounds crystallize quasi-isotypically exhibiting Rb+ cations in 10-fold oxygen coordination. The hydrogen peroxide adduct (Rb2[B12(OH)12]·2H2O2) is explosive on shock and heat, while the hydrate (Rb2[B12(OH)12]·2H2O) is not.  相似文献   

12.
Crystal structure of [ReO2(4-MeOpy)4][PF6] (4-MeOpy = 4-methoxypyridine) complex has been examined by the single crystal X-ray analytical method. This complex shows a trans-dioxo geometry (average Re-O bond length = 1.766(2) Å) and its equatorial plane is occupied by four 4-MeOpy molecules (average Re-N bond length = 2.156(4) Å). Electrochemical reaction of [ReO2(4-MeOpy)4]+ in CH3CN solution containing tetra-n-butylammonium perchlorate as a supporting electrolyte has been studied using cyclic voltammetry at 24 °C. Cyclic voltammograms show one redox couple around 0.65 V (Epa) and 0.58 V (Epc) [versus ferrocene/ferrocenium ion redox couple, (Fc/Fc+)]. Potential differences between two peaks (ΔEp) at scan rates in the range from 0.01 to 0.10 V s−1 are 65 mV, which is almost consistent with the theoretical ΔEp value (59 mV) for the reversible one electron transfer reaction at 24 °C. The ratio of anodic peak currents to cathodic ones is 1.04 ± 0.03 and the (Epa + Epc)/2 value is constant, 0.613 ± 0.001 V versus Fc/Fc+, regardless of the scan rate. Spectroelectrochemical experiments have also been carried out by applying potentials from 0.40 to 0.77 V versus Fc/Fc+ with an optically transparent thin layer electrode. It was found that the UV-visible absorption spectra show clear isosbestic points at 228, 276, and 384 nm, and that the electron stoichiometry is evaluated as 1.03 from the Nernstian plot. These results indicate that the [ReO2(4-MeOpy)4]+ complex is oxidized reversibly to the [ReO2(4-MeOpy)4]2+ complex. Furthermore, it was clarified that the [ReO2(4-MeOpy)4]2+ in CH3CN has the characteristic absorption bands at 236, 278, 330, 478, and 543 nm and their molar absorption coefficients are 4.3 × 104, 4.5 × 103, 1.0 × 104, and 6.1 × 103 M−1 cm−1 (M = mol dm−3), respectively.  相似文献   

13.
The salts - yellow [Cr(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Au(CN)2]3 · 2H2O, pale yellow [Ru(NH3)6][Ag(CN)2]3 · 2H2O, yellow K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O, and colorless [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O - have been prepared by evaporation of aqueous solutions of potassium dicyanoargenate or potassium dicyanoaurate and salts of the appropriate cations. Hydrogen bonding between the cations and the cyano groups of the anions facilitates the formation of structures with strong metallophilic interactions between the anions. Thus, the [Au(CN)2] or [Ag(CN)2] ions self-associate into linear trimers in the isostructural set of crystals, [Cr(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1610(4) Å), [Co(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1557(2) Å), [Co(NH3)6][Au(CN)2]3 · 2H2O (Au?Au distance; 3.0939(4) Å), and [Ru(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1584(5) Å). Crystalline [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O also contains nearly linear trimers of the dicyanoaurate ion. Yellow crystals of K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O contain a centrosymmetric, bent chain of seven dicyanoaurate ions with Au?Au separations of 3.1806(3), 3.2584(4), and 3.1294(4) Å.  相似文献   

14.
A new tri-cyanometalate building block for heterometallic complexes, [PPh4]2[FeII(Tpms)(CN)3] (2) (PPh4 = tetraphenylphosphonium; Tpms = tris(pyrazolyl) methanesulfonate), has been prepared. Using it as a building block, a one-dimensional chain compound, {[FeII(Tpms)(CN)3][MnII(H2O)2( DMF)2]} · DMF (3), has been synthesized and structurally characterized. The magnetic properties of 3 correspond to a ferromagnetic chain with weak long-range superexchanged magnetic interaction between the high-spin manganese(II) ions.  相似文献   

15.
A hexarhenium cyanohydroxo anionic cluster complex [Re6Se8(CN)4(OH)2]4− was synthesized for the first time starting from [Re6Se8(OH)6]4−, which was crystallized as a salt of the composition Cs2.75K1.25[Re6Se8(CN)4(OH)2]·H2O (1). The reaction of the complex with Cu2+ in an aqueous ammonia or methylamine solutions afforded [Cu(NH3)5]2[Re6Se8(CN)4(OH)2]·8H2O (2) or [{Cu(CH3NH2)4}2Re6Se8(CN)4(OH)2] (3), respectively. All of these three compounds were characterized by a single-crystal X-ray diffraction method. Compound 1 is crystallized in the tetragonal space group I4/m with eight formula units per cell (a = b = 17.4823(14) Å, c = 19.430(2) Å, V = 5938.3(10) Å3); compound 2 is crystallized in the monoclinic space group P21/n with two formula units per cell (a = 12.1845(13) Å, b = 8.6554(9) Å, c = 19.2568(19) Å, β = 91.081(2)°, V = 2030.5(4) Å3); compound 3 is crystallized in the orthorhombic space group Cmcm with four formula units per cell (a = 19.816(4) Å, b = 14.611(3) Å, c = 13.751(3) Å, V = 3981.2(13) Å3). The luminescence properties of 1 were studied in both aqueous solution and solid state. In addition, the electronic structure of [Re6Se8(CN)4(OH)2]4− was elucidated by DFT calculations.  相似文献   

16.
[PPN][Se5Fe(NO)2] (1) and [K-18-crown-6-ether][S5Fe(NO)2] (2′) were synthesized and characterized by IR, UV-Vis, EPR spectroscopy, magnetic susceptibility, and X-ray structure. [PPN][Se5Fe(NO)2] easily undergoes ligand exchange with S8 and (RS)2 (R = C7H4SN (5), o-C6H4NHCOCH3 (6), C4H3S (7)) to form [PPN][S5Fe(NO)2] and [PPN][(SR)2Fe(NO)2]. The reaction displays that [E5Fe(NO)2] (E = Se (3), S (4)) facilely converts to [Fe4E3(NO)7] by adding acid HBF4 or oxidant [Cp2Fe][BF4] in THF, respectively. Obviously, complexes 1 and 2′ serve as the precursors of the Roussin’s black salts 3 and 4. The electronic structure of {Fe(NO)2}9 core of [Se5Fe(NO)2] is best described as a dynamic resonance hybrid of {Fe+1(NO)2}9 and {Fe−1(NO+)2}9 modulated by the coordinated ligands. The findings, EPR signal of g = 2.064 for 1 at 298 K, implicate that the low-molecular-weight DNICs and protein-bound DNICs may not exist with selenocysteine residues of proteins as ligands, since the existence of protein-bound DNICs and low-molecular-weight DNICs in vitro has been characterized with a characteristic EPR signal at g = 2.03. In addition, complex 2′ treated human erythroleukemia K562 cancer cells exposed to UV-A light greatly decreased the percentage survival of the cell cultures.  相似文献   

17.
Two alternating 1-D metal-radical linear [L:Cu(hfac)2]n and zig-zag [L:Mn(hfac)2]n chains (where L = 4-trimethylsilylethynyl-1-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)benzene) and hfac = hexafluoroacetylacetonate) are described and characterized by X-ray diffraction of their crystals. Bulk magnetic measurements of L:Cu(hfac)2 indicated a ferromagnetic interaction with J = 6 cm−1 and L:Mn(hfac)2 yielded ferrimagnetic interactions with J = −95 cm−1. For the latter, a strong increase of their magnetic moment at lowest temperatures was observed only at very low static magnetic field, while for Hdc > 0.05 T saturation effect led to a downward slope after reaching a maximum.  相似文献   

18.
A new complex of composition [Cu(2-NO2bz)2(nia)2(H2O)2] (1) (nia = nicotinamide, 2-NO2bz = 2-nitrobenzoate) has been prepared and its composition and stereochemistry as well as coordination mode have been determined by elemental analysis, electronic, infrared and EPR spectroscopy, magnetization measurements over the temperature range 1.8-300 K, and its structure has been solved, as well. The complex structure consists of the centrosymmetric molecules with Cu(II) atom monodentately coordinated by the pair of 2-nitrobenzoato anions and by the pair of nicotinamide molecules, forming nearly tetragonal basal plane, and by a pair of water molecules that complete tetragonal-bipyramidal coordination polyhedron about the copper atom. The complex 1 exhibits magnetic moment μeff = 1.86 B.M. at 300 K which decreases to μeff = 1.83 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie-Weiss law with Curie constant of 0.442 cm3 K mol−1 and with Weiss constant of −1.0 K. EPR spectra at room temperature as well as at 77 K are of axial type with g = 2.065 and g = 2.280 and exhibit clearly, but partially resolved parallel hyperfine splitting with AII = 160 G, that is consistent with the determined molecular structure of 1. In order to analyze the factors influencing the degree of tetragonal distortion of coordination polyhedron, the dataset of 72 structures similar to that of 1 was extracted from CCD and analyzed. A significant correlation between the average Cu-Oax bond length and tetragonality parameter τ which was found as a consequence of the Jahn-Teller effect.  相似文献   

19.
The aqueous solution behaviour of the equilibrium related cis-[PdCl2(PTA)2] and [PdCl(PTA)3]Cl complexes has been investigated in the presence of acid and iodide ions. Several of the resulting species were identified and a reaction scheme accounting for identified complexes is proposed. The crystal structures of trans-[PdI2(PTA-H)2][PdI3(PTA)]2 · 2H2O (1) (PTA-H+ = protonated form of PTA) and trans-[PdI2(PTA)2] (2) are reported. The geometry around the Pd(II) metal centre in 1 (for both the cation and anion) and 2 is distorted square planar. The PTA ligands occupy a trans orientation in the cation of 1 and in complex 2. Compound 1 represents a rare example of a Pd(II) system wherein the cation:anion pair, in a 1:2 ratio, are both coordination complexes. It is the first d8 Ni-triad square planar complex containing only one PTA ligand and only the second platinum group metal complex. For the cation in 1, the bond distances and angles are Pd(1)-P(1) = 2.2864(16) Å, Pd(1)-I(1) = 2.6216(7) Å, P(1)-Pd(1)-P(1)′ = 180.00(7)° and P(1)-Pd(1)-I(1) = 87.62(4)°, while in the anion the bond distances are Pd(2)-P(2) = 2.2377(15) Å, Pd(2)-I(4) = 2.5961(13) Å, Pd(2)-I(2) = 2.6328(13) Å, Pd(2)-I(3) = 2.6513(8) Å, while the angles are P(2)-Pd(2)-I(4) = 90.00(5)°, P(2)-Pd(2)-I(2) = 89.69(5)°, I(4)-Pd(2)-I(2) = 179.57(2)°, P(2)-Pd(2)-I(3) = 175.19(4)°, I(4)-Pd(2)-I(3) = 90.29(4)° and I(2)-Pd(2)-I(3) = 90.05(4)°. Bond distances and angles of the coordination polyhedron in 2 are Pd-P = 2.327(3) Å, Pd-I = 2.5916(10) Å, P-Pd-I = 89.13(7)° and P-Pd-P = 180.00(13)°. The average effective- and Tolman cone angles for the two ligands, calculated from the crystallographic data, are 115° and 117° for PTA and PTA-H, respectively.  相似文献   

20.
One-pot reaction between MnCl2·4H2O, K2tcpd (tcpd2− = [C10N6]2− = (C[C(CN)2]3)2− = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion) and 2,2′-bipyrimidine (bpym = C8H6N4) in aqueous solution yields the new compound [Mn2(bpym)3(tcpd)2(H2O)2] (1). The molecular structure of 1 consists of a centrosymmetrical binuclear complex which includes unprecedented unidentate tcpd ligands with two bidentate and a bis-chelate bpym units. Examination of the intermolecular distances reveals that the dinuclear units are held together by hydrogen bonds involving coordinated water molecules and two nitrile groups of the tcpd ligand, giving rise to a 2D structure overall. Variable-temperature magnetic susceptibility data show the occurrence of slight antiferromagnetic coupling (J = −0.58 cm−1) between the Mn(II) ions through bridging bpym (the exchange Hamiltonian being defined as ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号