首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present the synthesis and characterization of three mononuclear iron(III) complexes: dichloro[N-propanamide-N,N-bis-(2-pyridylmethyl)amine]iron(III) perchlorate (1), trichloro[N-methylpropanoate-N,N-bis-(2-pyridylmethyl)amine]iron(III) (2) and trichloro[bis-(2-pyridylmethyl)amine]iron(III) (3). The complexes were characterized by cyclic voltammetry, conductivimetry, elemental analyses, and by electronic, infrared and Mössbauer spectroscopies. Complex 1 was also characterized by X-ray structural analysis, which showed an iron center coordinated to one amide, one tertiary amine, two pyridine groups and two chloride ions. While for 1 the X-ray molecular structure and the infrared spectrum confirm the coordination of the amide group by the oxygen atom, the infrared spectrum of 2 indicates that the ester group present in the ligand is not coordinated, resulting in a N3Cl3 donor set, similar to the one present in 3. However, in 3 there is a secondary amine while in 2 a tertiary amine exists. These structural differences result in distinguishable variations in the Lewis acidity of the iron center, which could be evaluated by the analysis of the redox potential of the complexes, as well as by Mössbauer parameters. Thus, the Lewis acidity decreases in the following order: 1 > 2 > 3. It is important to notice that 1 has the amide group coordinated to the iron center, a feature present in metalloenzymes as lipoxygenase and isopenicillin N synthase, and in a small number of mononuclear iron(III) complexes.  相似文献   

2.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

3.
Iron(II) complexes of the type [Fe(L)(NCS)2] with the tripodal ligand apme (apme = N1-(2-aminoethyl)-N1-(2-pyridyl-methyl)-1,2-ethanediamine) as well as with its derivatives were prepared and structurally characterized. The bond distances thus obtained showed that all complexes investigated were high-spin at the respective temperature. Furthermore [Fe(Me4apme)(NCS)2] was analyzed using Mößbauer spectroscopy that showed that this complex remains in its high-spin state over the entire temperature range.  相似文献   

4.
Three new iron(II) N6 tripodal complexes provide information on the role of ligand conformation on spin crossover behavior. The ligands (generated in situ) are the Schiff base condensate of tris(2-aminoethyl)amine (tren) with three equivalents of 4-methyl-5-imidazolecarboxaldehyde, H3(1), and the condensates of tris(2-aminoethyl)methylammonium ion (N(Me)tren+) with three equivalents of 4-methyl-5-imidazolecarboxaldehyde, N(Me)H3(1)+, or with 2-imidazole carboxaldehyde, N(Me)H3(3)+. The structures of [FeH3(1)](ClO4)2, [FeN(Me)H3(1)](ClO4)3 and [FeN(Me)H3(1)](ClO4)3 are reported. The central tren nitrogen atom in these complexes exhibits three different geometries, pyramidal with the nitrogen pointed toward the iron (“N in”, Fe-N distance of 3.050 Å), planar (Fe-N distance of 3.527 Å), and pyramidal with the nitrogen pointed away from the iron atom (“N out”, Fe-N distance of 3.921 Å). With iron(II) the “N in” geometry is high spin while the planar and “N out” geometries are low spin. [FeH3(1)](ClO4)2 exhibits spin crossover behavior between room temperature and 77 K as determined by Mössbauer spectroscopy and also exhibits a conformational change from “N in” to planar over this same temperature range. The structures of [FeN(Me)H3(1)](ClO4)3 and [FeN(Me)H3 (3)](ClO4)3 are locked into the “N out” geometry due to the quaternary nitrogen atom and are low spin even at room temperature. The LS planar and “N out” conformations place a strain on the bond angles of the aliphatic arms of the ligand, which are more pronounced in the “N out” case. The HS “N in” geometry lacks this strain.  相似文献   

5.
New trinuclear iron(III) furoates with the general formula [Fe3O(α-fur)6(R-OH)3]X, where α-fur C4H3OCOO, R = CH3 (1), C2H5 (2), n-C3H7 (3), n-C4H9 (4), X = NO3 (1-4); [Fe3O(α-Fur)6(DMF)(CH3OH)2]NO3 (5); [Fe3O(α-Fur)6(H2O)(CH3OH)2]Cl (6); [Fe2MO(α-Fur)6(L)(H2O)2], where L = THF (7-9), DMF (10-12), M = Mn2+ (7, 10), Co2+ (8, 11), Ni2+ (9, 12) and [Fe2MO(α-Fur)6(3Cl-Py)3], where M = Mn2+ (13), Co2+ (14), Ni2+ (15); have been prepared and investigated by Mössbauer and IR spectroscopy. The X-ray crystal structure for the 1·2CH3OH complex indicates that it crystallizes in the monoclinic crystal system (P21/n) and has a structure typical of μ3-O-bridged trinuclear iron(III) compounds. Coordination compounds 1, 4, 7, 8 can be used as regulators of the biochemical composition of cyanobacterium Spirulina platensis biomass. The supplementation of these compounds, in concentrations exceeding 5-10 mg/l, increases the content of iron, amino acids, peptides and carbohydrates in Spirulina.  相似文献   

6.
The trihydrochloride salt of tris(2-aminoethyl)methane (tram·3HCl) was deprotonated in methanolic potassium hydroxide and reacted with three molar equivalents of imidazole-2-carboxaldehyde to give a new Schiff base ligand, HC(CH2CH2NCH-2ImH)3. The ligand, H3(1), was reacted in situ with iron(II)chloride tetrahydrate. Addition of excess sodium perchlorate resulted in the isolation of the dark red [FeH3(1)](ClO4)2·KClO4. The neutral emerald green iron(III) tripodal complex, Fe(1), was prepared by the aerial oxidation of the iron (II) complex on addition of three equivalents of potassium hydroxide. The complexes are characterized by EA, IR, ESI-MS, Mössbauer, magnetic susceptibility and single crystal XRD. The spectroscopic and structural data support a low spin assignment for both the iron(II) and iron(III) complexes at 295 K. The overall conformation of the tram backbone in these complexes has the apical carbon atom, Cap, pointed away from the iron atom with an average non-bonded distance of 3.83 Å. However, Cap is distorted from tetrahedral geometry toward trigonal monopyramidal. This is indicated by a narrowing of the H-Cap-C angles, an expansion of the C-Cap-C angles and a compression along the C-H axis so that Cap approaches the plane defined by its three carbon substituents. Two unusual supramolecular features are exhibited in [FeH3(1)](ClO4)2·KClO4. These are a polymeric [K(ClO4)32−]n anion and a bidentate hydrogen bonding donor, NimineCH-Cimidazole-NimidazoleH, on each arm of the tripodal ligand. Density Functional Theory (DFT) calculations using the B3LYP functional were performed on the low spin and high spin states of both complexes. B3LYP correctly predicts that the low spin state is favored in both systems and closely matches the important metrical parameters that are indicative of spin state. B3LYP shows that the Cap-out conformation of the tram backbone would be nearly identical in the low and high spin forms.  相似文献   

7.
Two low-spin Fe(III) dicyano-dicarboxamido complexes have been prepared from N,N-bis(8-quinolyl)malonamide derivatives. Crystal structures show that the four nitrogen donors available to complex the metal are arranged in the equatorial plane with the two cyanides trans to each other in the axial positions when the malonyl moiety is disubstituted. In contrast, the unsubstituted malonyl results in only three nitrogens in the equatorial plane with the fourth in an apical position and the two cyanides occupying cis sites, one equatorial and the other axial. NMR analyses show that the solid state structure of both complexes is retained in solution. Both types of configurational complexes catalyze cyclic olefin oxidations with H2O2 but only the cis-dicyano complex catalyzes stilbene oxidation with formation of epoxides, diols and benzaldehyde.  相似文献   

8.
Here we report the formation of iron in hexavalent state, in ozonalysis of iron(III) in alkaline medium. The formation of tetrahedral ion is confirmed by UV-Visible and Mössbauer spectroscopic techniques. The value of isomer shift, δ, of the tetra-oxy anion is consistent with known δ values for various salts of iron(VI) ion.  相似文献   

9.
Complexes of FeCl2 with the known bis(3-methyl-2-thione-imidazolyl)methane (L1) and the new bis(3-tert-butyl-2-thione-imidazolyl)methane (L2) are reported. For both [L1FeCl2]n (3) and [L2FeCl2]n (4) X-ray crystallography reveals that 1D-polymeric chain structures are present in the solid state, with the two mercaptoimidazolyl units of L1 and L2 coordinating to different metal ions. Complexes 3 and 4 are further characterized by Mössbauer spectroscopy and SQUID magnetometry. NMR spectroscopy suggests that the complexes largely dissociate in polar solvents. X-ray structures of L2 and its precursor bis(imidazolium) salt are also reported.  相似文献   

10.
A new imidazolinium [(SIBiphen)H](BF4) was synthesized in three steps from 2-aminobiphenyl. The reaction of the salt with Pd(OAc)2, NaI and t-BuOK gave a dimeric Pd(II) complex [(SIBiphen)PdI2]2, which was analyzed by an X-ray diffraction study. The reaction of [Pd(allyl)Cl]2, the imidazolinium salt and t-BuOK in THF at −78 °C gave the monomeric Pd complex, in which the N-heterocyclic carbene was bound to the metal centre, as confirmed by a single-crystal X-ray diffraction study. A preliminary catalytic study showed that these new systems were moderately active in the Suzuki-Miyaura coupling of aryl halides.  相似文献   

11.
Red or orange crystals of [Co(NH3)6]2Cl2[Fe(CN)6] · 4H2O (1), [Co(en)3]2Cl2[Fe(CN)6] · 2H2O (2) and [Co(en)3]4[Fe(CN)6]3 · 21.6H2O (3) were isolated from the aqueous systems Co3+-LN-[Fe(CN)6]4− (LN = NH3, en = 1,2-diaminoethane). In all isolated samples the combination of Mössbauer (δ values were from the range −0.07 to −0.08 mm/s) and IR spectra (ν(CN) stretching vibrations in the range 2015-2047 cm−1) confirms the presence of low spin Fe(II) in [Fe(CN)6]4− anions. X-ray structure analyses corroborate the ionic character of all studied compounds. These contain diamagnetic [Co(NH3)6]3+ (1) or [Co(en)3]3+ (2 and 3) complex cations and diamagnetic [Fe(CN)6]4− complex anions. In compounds 1 and 2 chloride anions are present, too. All three compounds contain water of crystallization, in compound 3 as many as 21.6 molecules per formula unit.  相似文献   

12.
Heteroligand copper(I) complexes of bi- or bis-bidentate acylamidophosphates PhC(S)NHP(S)(OPr-i)2, PhC(S)NHP(O)(OPr-i)2, Et2NC(S)NHP(S)(OPr-i)2, PhNHC(S)NHP(S)(OPr-i)2, N-(4-aminobenzo-15-crown-5)-C(S)NHP(S)(OPr-i)2, N,N-(1,10-diaza-18-crown-6)-[C(S)NHP(S)(OPr-i)2]2, and triphenylphosphine were prepared and characterised. Copper is bound by two PPh3 and one SCNPX (X = O, S) fragment of chelating ligand in all cases. Triphenylphosphine molecules reversibly dissociate in solution. Details of the X-ray structures of (Ph3P)2Cu[PhC(S)NP(S)(OPr-i)2] and (Ph3P)2Cu[Et2NC(S)NP(S)(OPr-i)2] are reported.  相似文献   

13.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

14.
《Inorganica chimica acta》2004,357(4):1219-1228
The new mononuclear [FeCl2(HOPri)4] (1), polymeric [{Cl3Fe(μ-Cl)Fe(HOPri)4}n] (2) and binuclear [I2Fe(μ-I)2Fe(PriOH)4] (3) iron(II) complexes have been synthesized in high yields in propan-2-ol or toluene/propan-2-ol mixtures at room temperature. Magnetic moment measurements, 57Fe Mössbauer spectroscopy data and the results of semi-empirical quantum mechanical calculations confirmed the high-spin configuration of the iron(II) centres, which were shown to be four- and/or six-coordinate by single crystal X-ray diffraction analyses. Intermolecular hydrogen bonding was observed in the solid state structure of 1, intramolecular interactions in 2, while both intra- and intermolecular association was seen in 3. Long iron-(μ-halide) bonds suggest the possibility of complex dissociation in solution and facile ligand substitution in 2 and 3.  相似文献   

15.
Synthesis and structure of dinuclear complexes [{FeIII(L5)}b{FeIII(L5)}](BPh4)2, where L5 is a pentadentate Schiff-base ligand, b is a bidentate N-oxide bridging ligand based on bipyridine, is reported. Magnetic behavior is investigated in terms of the magnetic susceptibility, magnetization, and Mössbauer spectroscopy revealing that the complexes are high-spin over the whole temperature region.  相似文献   

16.
Aerial reaction of cobalt(II) perchlorate with H3(1) [H3(1) is the tripodal ligand derived from the condensation of tris(2-aminoethyl)amine with three equivalents of imidazole-2-carboxaldehyde] in methanol and [FeH3(1)(ClO4)2] with Fe(1) in acetonitrile results in the formation of [CoH2L](ClO4)2·H2O and [FeHL]ClO4·CH3CN, respectively. Mössbauer spectroscopy and variable temperature magnetic susceptibility indicate that [FeHL]ClO4·CH3CN is a low spin iron(III) species. Both complexes were characterized by EA, IR, and single crystal structure determinations. Both complexes crystallize in the centrosymmetric monoclinic space group, P21/c, so both enantiomers of the chiral complex are present. The supramolecular features of these complexes, caused by the partial deprotonation of the ligand and the resultant formation of imidazole-H···imidazolate hydrogen bonds, are different. [FeHL]+ forms hydrogen bonds with molecules from adjacent cells of like chirality. This results in a linear homochiral array of iron complexes. In contrast, [CoH2L]2+ forms hydrogen bonds with a molecule from the same cell and one from another cell resulting in an 1D alternating heterochiral zig-zag chain.  相似文献   

17.
The first FeIII complexes 1-6 with cyclin-dependent kinase (CDK) inhibitors of the type [Fe(Ln)Cl3nH2O (n = 0 for 1, 1 for 2, 2 for 3-6; L1-L6 = C2- and phenyl-substituted CDK inhibitors derived from 6-benzylamino-9-isopropylpurine), have been synthesized and characterized by elemental analysis, IR, 57Fe Mössbauer, 1H and 13C NMR, and ES+ mass spectroscopies, conductivity and magnetic susceptibility measurements, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The study revealed that the compounds are mononuclear, tetrahedral high-spin (S = 5/2) FeIII complexes with an admixture of an S = 3/2 spin state originating probably from five-coordinated FeIII ions either connecting with a bidentate coordination mode of the CDK inhibitor ligand or relating to the possibility that one crystal water molecule enters the coordination sphere of the central atom in a portion of molecules of the appropriate complex. Nearly spin-only value of the effective magnetic moment (5.82 μeff/μB) was determined for compound 1 due to absence of crystal water molecule(s) in the structure of the complex. Based on NMR data and DFT calculations, we assume that the appropriate organic ligand is coordinated to the FeIII ion through the N7 atom of a purine moiety. The cytotoxicity of the complexes was tested in vitro against selected human cancer cell lines (G-361, HOS, K-562 and MCF-7) along with the ability to inhibit the CDK2/cyclinE kinase. The best cytotoxicity (IC50: 4-23 μM) and inhibition activity (IC50: 0.02-0.09 μM) results have been achieved in the case of complexes 2-4, and complexes 3, 4 and 6, respectively. In addition, the X-ray structure of 2-chloro-6-benzylamino-9-isopropylpurine, i.e. a precursor for the preparation of L1, L4 and L5, is also described.  相似文献   

18.
Reaction in air of iron(III) salts with tripodal ligands formed from the condensation of tris-(2-aminoethyl)amine (tren) with three equivalents of 2-pyridinecarboxaldehyde (py) or 1-methyl-2-imidazolecarboxaldehyde (NCH3Im) yielded exclusively the iron(II) complexes, [Fetren(py)3]X2 (X=ClO4 − or PF6 −) or [Fetren(NCH3Im)3](ClO4)2. The complexes were characterized by EA, IR, UV, Mössbauer, and mass spectroscopy. The structure of [Fetren(py)3](ClO4)2 was determined at 100 and 290 K. The structures are essentially the same and feature an octahedral iron with facial coordination of pyridine and imine nitrogen atoms with average bond distances of 1.9747 and 1.9523 Å, respectively, at 290 K. The short Fe-N bond distances and lack of variation with temperature support a low spin, 1A, assignment for the iron atom. The center nitrogen atom of the tren is essentially planar and is outside of bonding interaction with the iron, 3.45 Å. The low spin assignment is supported by Mössbauer spectroscopy, which reveals the presence of two low spin forms that are not in thermal equilibrium. In contrast, the Mössbauer spectrum of [Fetren(NCH3Im)3](ClO4)2 reveals the presence of both high spin, 5T, and low spin, 1A, forms at room temperature, which on cooling to 77 K simplify to the low spin form.  相似文献   

19.
Single-crystal X-ray structure of an iron(III) complex of 2-acetyl-1,3-indandione is resolved which reveals that a racemic mixture, composed of Δ-fac and Λ-fac stereoisomers, is formed. Both species have octahedral geometry, but slightly distinguishable. Detailed Mössbauer data indicate a high-spin electronic structure of the Fe(III) centres Fe1 and Fe2 with spin-spin magnetic relaxation process. Two different approaches for computer processing of the experimental Mössbauer spectra are considered.  相似文献   

20.
The new N,N,O heteroscorpionate ligand 3,3-bis(1-vinylimidazol-2-yl)propionic acid (Hbvip) (5) was synthesised in five steps starting from 1-vinylimidazole. This ligand is closely related to 3,3-bis(1-methylimidazol-2-yl)propionic acid (Hbmip), but contains two vinyl linker groups which can be used for radical-induced polymerisation reactions. The κ3-N,N,O coordination behaviour of 5 was proven by the synthesis of the tricarbonyl complexes [Re(bvip)(CO)3] (6), [Mn(bvip)(CO)3] (7) and [Cu(bvip)2] (8). To obtain good yields of 6, it was synthesised in water instead of THF. The ligand as well as all three complexes were characterised by X-ray crystallography. Copolymerisation of 5 with pure methyl methacrylate (MMA) or a combination of MMA and ethylene glycol dimethacrylate (EGDMA) led to the solid phases P1 and P2. Polymer-bound rhenium and manganese tricarbonyl complexes could be obtained by the reaction of deprotonated P1 with [MBr(CO)5] (M = Re, Mn) and also by copolymerisation of 6 and 7 with MMA. In both cases, the facial tripodal binding behaviour was evidenced by IR spectra of the polymers. Furthermore, the content of metal incorporated in the polymers was determined by elemental analysis, AAS or ICP-OES measurements. Reaction of the deprotonated solid phase P1 with copper(II) chloride led to a blue solid-phase (P1-Cu). The UV-Vis absorption maximum of P1-Cu is found at 615 nm, which is almost identical to that found for 8. Thereby, it seems likely that P1 is flexible enough to form bisligand complexes with copper(II). This means that the copper centres act as a kind of crosslinking agents. In contrast, the heterogeneous reaction of P2 with copper(II) chloride yielded a lime green solid phase (P2-Cu). The bathochromic shift of the absorption maximum by 102 nm suggests one-sided bound copper centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号