首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new heterobimetallic complexes of rhenium(I) and ruthenium(II) [(CO)3(NN)Re(4,4′-bpy)Ru(NN)2Cl](PF6)2 and already known monometallic complexes [Cl(NN)2Ru(4,4′-bpy)](PF6) and [(CO)3(NN)Re(4,4′-bpy)](PF6) and bimetallic complexes [Cl(NN)2Ru(4,4′-bpy)Ru(NN)2Cl](PF6)2, [(CO)3(NN)Re(4,4′-bpy)Re(NN)(CO)3](PF6)2 (NN = 2,2′-bipyridine, 1,10-phenanthroline; 4,4′-bpy = 4,4′-bipyridine) are synthesized and characterized by spectral techniques. The photophysical properties of all the complexes are studied. It is found that attachment of rhenium(I) altered the photophysical characteristics of ruthenium(II). Excited state energy transfer from the rhenium(I) chromophore to the ruthenium(II) is observed upon excitation at 355 nm.  相似文献   

2.
Photochemical and photophysical properties of fac-[Re(CO)3(Clphen)(trans-L)]+ complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by 1H NMR spectroscopy. The true quantum yields for fac-[Re(CO)3(Clphen)(trans-bpe)]+ were constant (Φ = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)3(Clphen)(trans-stpy)]+, similar true quantum yields were observed only at higher energy irradiation (Φ313 nm = 0.53 and Φ365 nm = 0.57), but it decreased significantly at 404 nm (Φ = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the 3ILtrans-L and 3MLCTRe→NN excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)3(Clphen)(cis-L)]+, were also investigated in different environments to analyze the relative energy of the 3MLCTRe→Clphen excited state for each compound.  相似文献   

3.
As the greenhouse effect increases, the development of systems able to convert with high efficiency CO2 to energetically rich molecules owns a crucial weight in the technological and environmental domain. As catalyst, rhenium complexes, of the type fac-[Re(L)(CO)3Cl] (i.e. L = 2,2′-bipyridyl or 4,4′-bipyridyl), have attracted a large interest demonstrating promising catalytic properties. fac-[Re(v-bpy)(CO)3Cl]-based polymer deposited onto a solid support has been already investigated as heterogeneous catalyst in the reduction of CO2. Here, we deposited by electrochemical polymerization fac-[Re(v-bpy)(CO)3Cl] onto a nanocrystalline TiO2 film on glass and we investigated by cyclic voltammetry the properties of such heterogeneous catalyst in the electrochemical reduction of CO2. We demonstrated that the nanoporous nature of the substrate allows to increase the two-dimensional number of redox sites per surface area and hence to get a significant enhancement of the catalytic yield.  相似文献   

4.
A new porphyrin 5,15-(4-pyridyl)-10,20-(pentafluorophenyl)porphyrin (H2DPDPFPP) and its diruthenium(II) analog ([trans-H2(DPDPFPP)Ru2(bipy)4Cl2(PF6)2]) have been synthesized and characterized. Electronic transitions associated with the porphyrin consist of an intense Soret band near 400 nm and four Q-bands from 500 nm to 650 nm. Coordination of two [Ru(bipy)2Cl]+ groups, where bipy = 2,2′-bipyridine, to the pyridyl nitrogens of the porphyrin give additional electronic transitions associated with the bipy orbitals and metal to ligand charge transfer (MLCT) transitions associated with the Ru(II) and bipy orbitals. Reversible redox couples in the cathodic region occur at E1/2 = −0.74 V and −1.21 V versus Ag/AgCl reference which are shifted to more positive potentials when the porphyrin is coordinated to the Ru(II) groups. Gel electrophoresis studies with linearized pUC18 indicate an interaction between the metallated porphyrin and DNA which is confirmed by UV/Vis titrations with calf thymus (CT) DNA giving a binding constant of ca. 105 M−1. When buffered, pH 7, solutions of circular plasmid DNA containing the ruthenium porphyrin are irradiated with a 50 W tungsten lamp cleavage of the DNA is observed.  相似文献   

5.
New direct syntheses of [Pt(trpy)(NCCH3)](CF3SO3)22 (where trpy = 2,2′:6′,2′′-terpyridine) and [Pt(tBu3-trpy)(NCCH3)](CF3SO3)23 (where tBu3-trpy = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine) via the displacement of acetonitrile from [Pt(NCCH3)4](CF3SO3)2 have been developed. The synthetic utility of 2 was investigated in reactions with triphenylphosphine (PPh3), 2,6-dimethylphenyl isocyanide (CN-Xyl), 2,5-dimethyl-2,5-diisocyanohexane (TM4), and tert-butyl isocyanide (CN-tBu). Whereas the expected substitution products were observed for reactions with PPh3, CN-Xyl, and CN-tBu, dealkylation of TM4 occurred to afford [Pt(trpy)(CN)](CF3SO3) 6. The structures of [Pt(trpy)L]2+ dications show little intermolecular interactions in the solid state, with the exception of the tBu3-trpy complex 3 which exists as head-to-tail dimers with a Pt-Pt distance of 3.29 Å. The cyano product 6 was found to stack in infinite chains of cations with a Pt-Pt distance of 3.45 Å.  相似文献   

6.
In this work, the use of proton nuclear magnetic resonance, 1H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Φtrue), when a reactant and photoproduct absorption overlap. For this, Φtrue for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)3(NN)(trans-L)]+ (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph2phen, and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e.g. ΦNMR = 0.80 for fac-[Re(CO)3(phen)(trans-bpe)]+) were much higher than those determined by absorption spectral changes (ΦUV-Vis = 0.39 for fac-[Re(CO)3(phen)(trans-bpe)]+). ΦNMR are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Φtrue by regular absorption spectral changes. For instance, Φ313 nm for free ligand photoisomerization determined both by absorption and 1H NMR variation are equal within the experimental error (bpe: ΦUV-Vis = 0.27, ΦNMR = 0.26; stpy: ΦUV-Vis = 0.49, ΦNMR = 0.49). Moreover, 1H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes.  相似文献   

7.
The character and dynamics of low-lying electronic excited states of the complexes fac-[Re(Cl)(CO)3(papy)2] and fac-[Re(papy)(CO)3(bpy)]+ (papy = trans-4-phenylazopyridine) were investigated using stationary (UV-Vis absorption, resonance Raman) and ultrafast time-resolved (visible, IR absorption) spectroscopic methods. Excitation of [Re(Cl)(CO)3(papy)2] at 400 nm is directed to 1ππ(papy) and Re → papy 1MLCT excited states. Ultrafast (?1.4 ps) intersystem crossing (ISC) to 3(papy) follows. Excitation of [Re(papy)(CO)3(bpy)]+ is directed to 1ππ(papy), 1MLCT(papy) and 1MLCT(bpy). The states 3(papy) and 3MLCT(bpy) are then populated simultaneously in less then 0.8 ps. The 3MLCT(bpy) state decays to 3(papy) with a 3 ps time constant. 3(papy) is the lowest excited state for both complexes. It undergoes vibrational cooling and partial rotation around the -NN- bond, to form an intermediate with a nonplanar papy ligand in less than 40 ps. This species then undergoes ISC to the ground state potential energy surface, on which the trans and cis isomers are formed by reverse and forward intraligand papy rotation, respectively. This process occurs with a time constant of 120 and 100 ps for [Re(Cl)(CO)3(papy)2] and [Re(papy)(CO)3(bpy)]+, respectively. It is concluded that coordination of papy to the Re center accelerates the ISC, switching the photochemistry from singlet to triplet excited states. Comparison with analogous 4-styrylpyridine complexes (M. Busby, P. Matousek, M. Towrie, A. Vl?ek Jr., J. Phys. Chem. A 109 (2005) 3000) reveals similarities of the decay mechanism of excited states of Re complexes with ligands containing -NN- and -CC- bonds. Both involve sub-picosecond ISC to triplets, partial rotation around the double bond and slower ISC to the trans or cis ground state. This process is about 200 times faster for the -NN- bonded papy ligand. The intramolecular energy transfer from the 3MLCT-excited Re(CO)3(bpy) chromophore to the intraligand state of the axial ligand occurs for both L = stpy and papy with a comparable rate of a few ps.  相似文献   

8.
The DNA binding and in vitro cytotoxicity of the dinuclear Ir(III) polypyridyl complexes [{(η5-C5Me5)Ir(dppz)}2(μ-pyz)](CF3SO3)41 and [{(η5-C5Me5)Ir(pp)}2(μ-4,4′-bpy)](CF3SO3)42-4 (pp = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz), benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (dppn)) with the rigid bridging ligands pyrazine (pyz) or 4,4′-bipyridine (4,4′-bpy) have been studied. Stable intercalative binding into CT DNA (calf thymus DNA) is indicated for the dppz complexes 1 and 3 by induced negative CD bands at about 300 nm and large viscosity increases, with the individual measurements being in accordance with intrastrand bis-intercalation for 3 and mono-intercalation for 1. The observed interruption of specific interresidue NOE cross peaks from the relevant nucleobase H6/H8 protons to the sugar H2′/H2″ protons of the preceding nucleotide is in accordance with bis-intercalation of complex 3 between the C3G18 and G4C17 base pairs and the T5A16 and A6T15 base pairs of the decanucleotide d(5′-CGCGTAGGCC-3′). Complexes 1 and 3 exhibit a greatly improved uptake by HT-29 (colon carcinoma) cells and significantly improved in vitro IC50 values of 1.8 ± 0.1 and 3.8 ± 0.1 μM towards this cell line in comparison to the mononuclear complex [(η5-C5Me5)IrCl(dppz)](CF3SO3) (IC50 = 7.4 ± 0.9 μM).  相似文献   

9.
Single crystal X-ray structural characterizations are recorded for an array of adducts of the form AgX:dppf (1:1)(n), X = simple (pseudo-)halide or oxy-anion, ‘dppf’ = bis(diphenyl phosphino)ferrocene, for adducts X = Cl (new phase), Br, I, SCN, OCN, CN, NO3 (new phase), O2CCH3, n = 2, the form being dimeric [(dppf-P,P′)Ag(μ-X)2Ag(P,P′-dppf)], for X = I, SCN, [Ag(μ-X)2(P-dppf-P′)2Ag′]; for X = O2CCF3, n = ∞, the form is an extended polymer: ?Ag(O · CO · CF3)(P-dppf-P′)Ag′(O?. A dichloromethane solvate phase of CuI:dppf (1:1)2 (also centrosymmetric) is also recorded. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR). The topology of the structures in the solid state was found to depend on the nature of the counterion.  相似文献   

10.
At ambient temperature, three 1D nitrogen-heterocyclic Cu(I)-diphosphine polymers, {[Cu2(dppm)2(BF4)2(pyz)](CH2Cl2)2}n (1), {[Cu2(dppm)2(4,4′-bpy)(CF3SO3)](CF3SO3)(CH3OH)}n (2), {[Cu2(dppe)2 (phen)2](ClO4)2(CH2Cl2)}n (3) (dppm = bis(diphenylphosphino)methane, dppe = bis(diphenylphosphino)ethane, pyz = pyrazine, 4,4′-bpy = 4,4′-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by X-ray crystallography, luminescence, IR, 1H, and 31P NMR. Structure analysis shows that 1 is a 1D linear polymer, 2 is a 1D stair-shaped polymer, and 3 is a 1D W-shaped polymer. A photoluminescent study of them shows that they exhibit fluorescent emission bands at ca. 555 nm, 535 nm and 557 nm, respectively.  相似文献   

11.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

12.
A new series of alkoxy- and polypyridine-bridged rhenium molecular rectangles of formulae {[Re(CO)3(OC5H11)]4(L)2}, with OC5H11 = 1-pentoxy, L = PCA (4-pyridinecarboxaldehyde azine) and 4,4′-azpy (4,4′-azobis(pyridine)), were synthesized and characterized by spectroscopic and diffraction techniques. Quenching of fluorescence of aromatic hydrocarbons by these complexes was studied by stationary and dynamic techniques. The quenching mechanism proved to be predominantly static and the Stern-Volmer constants indicated a decrease of the extent of C-H?π interactions with decreasing length of the linkers that form the molecular rectangles.  相似文献   

13.
Organometallic complexes of Re(I) with ligands having opposite redox properties have been synthesized and structurally characterized. X-ray crystal structures of the complexes show typical fac-ReI(CO)3 coordination to the redox active ligands. Complete electrochemical and spectroelectrochemical studies on the ligands and the metal complexes were performed. The IR-spectroelectrochemical responses were monitored using the fac-Re(CO)3 unit as a probe. The 15-20 cm−1 hypsochromic or bathochromic shift of the νCO bands upon reduction or oxidation is attributed to ligand-centered processes.  相似文献   

14.
Spectroscopic (IR, 31P NMR and UV-Vis) and electrochemical studies on fac-[Mn(CO)3(L′-L′)(L)]0/+,where L′-L′ = 1,2-bis(diphenylphosphino)ethane (dppe) or 1,10-phenanthroline (phen) and L = bromide, triflate, imidazole (im), isonicotinamide (isn) or N-(2-hydroxyethyl)isonicotinamide (heisn), were undertaken to understand the effect of various ligands on the CO-Mn-L and CO-Mn-(L′-L′) bonding characteristics of these complexes. Crystal structures for L = triflate/L′-L′ = dppe, L = triflate/L′-L′ = phen and L = isn/L′-L′ = phen are reported and they show that the two Mn-O(OSO2CF3) and Mn-N(isn) distances are similar. The tricarbonyl complexes exhibit two major bands in the 250-300 and 350-450 nm region of the UV-Vis spectrum. The lowest energy bands have been assigned as a contribution from both the metal-centered (MC) and metal to ligand (dπ → L′-L′) charge transfer (MLCT) transitions. The energy of this maximum absorption decreases in the order Br ∼ triflate > im > isn ∼ heisn. The cyclic four-component mechanism was observed at room temperature by voltammetric techniques for all the cases. On the basis of d metal orbital splitting, an electronic molecular orbital diagram is proposed. In this model, the ligands along the z-axis play a relevant role in the reverse of the HOMO energies of the fac/mer isomers by stabilizing the metal dz2 orbital relative to dxy in mer-Mn(II).  相似文献   

15.
Synthesis of the heterobimetallic platinum(II)-palladium(II) complexes with poly fluorinated benzenethiolates as intermetallic bridges, [(dppe)Pd(μ-SRF)2Pt(dppe)](SO3CF3)2 with SRp-SC6F4(CF3) (1), SC6F5 (2), p-SC6HF4 (3) and o-SC6H4(CF3) (4), have been accomplished either by a redistribution reaction in mixtures of the homonuclear bimetallic species, [(dppe)Pd(μ-SRF)2Pd(dppe)]2+/[(dppe)Pt(μ-SRF)2Pt(dppe)]2+ or by assembling the monometallic building blocks [(dppe)M(μ-SRF)2]/[(dppe)M′(solvent)2]2+, M, M′ = Pd or Pt. Both experimental systems reach an equilibrium state which is independent of the temperature within the probed range, −90 °C to +50 °C. A single crystal of the heterobimetallic compound [(dppe)Pd(μ-SC6F5)2Pt(dppe)](SO3CF3)2(acetone)2 (2) was isolated and analyzed by X-ray diffraction. Comparison with the corresponding structures exhibited by the homobimetallic analogous, [Pd2(μ-SC6F5)2(dppe)2](SO3CF3)2(acetone)2 (5) and [Pt2(μ-SC6F5)2(dppe)2](SO3CF3)2(acetone)2 (6) shows that all three structures are isostructural in space group . All three compounds exhibit a centrosymmetric planar [M2(μ-S)2] ring in which the sulfur substituents are arranged in an anti configuration.  相似文献   

16.
Single crystal X-ray structural characterizations are recorded for an array of adducts of the form {AgX:[dppc][PF6]}n (n = 1 or 2), [dppc][PF6] = 1,1′-bis(diphenylphosphino)cobaltocenium hexafluorophosphate, X = Cl, Br, NO3, NO2, C6H5CO2, CF3CO2. Synthetic procedures for all adducts are reported. All compounds have been fully characterised by elemental analysis and spectroscopic techniques. The structures in the solid state were found to depend on the nature of the counterion, for X = NO3, NO2, the complex being monomeric {[dppc-P,P′]Ag(NO3)2} or {[dppc-P,P′]Ag(NO2)}, for X = Cl, Br, C6H5CO2, CF3CO2, the complex is a dimer.  相似文献   

17.
Accumulation of radiopharmaceuticals in the liver is frequently observed and represents in general a limiting factor when developing novel labeled compounds for any purpose in nuclear medicine. Aiming at the treatment of liver cancer with radiopharmaceuticals, such accumulation is desired but the compounds have to remain in the liver over an extended time period rather than being washed out or redistributed over time in the whole body. Lipiodol is known to remain in the liver and we present here a study for the preparation of 186Re and 99mTc labeled Lipiodol surrogates expected to behave similarly. We have synthesized two bidentate and two tridentate ligands conjugated to a pendant C18 chain as well as their corresponding fac-[Re(CO)3]+ and fac-[Tc(CO)3]+ complexes. Three of the rhenium complexes have been structurally characterized. Labelling with [186Re(OH2)3(CO)3]+ and [99mTc(OH2)3(CO)3]+, respectively, gave yields in the range of 90%. The complexes could be extracted into Lipiodol due to their high lipophilicity and close structural relationship with the major components of Lipiodol. The complexes are stable in water and in Lipiodol for more than 24 h. These Lipiodol surrogates present new low-valent technetium and rhenium complexes for applications in liver cancer imaging and therapy.  相似文献   

18.
We present a new structurally determined seven-coordinate iron platform supported by the tris(2-picolyl)amine ligand 6,6′-(pyridin-2-ylmethylazanediyl)bis(methylene)bis(N-tert-butylpicolinamide) (TPA2C(O)NHtBu, 3) and its reactivity with oxo and nitrene transfer agents. Oxidation of the pentagonal bipyramidal, seven-coordinate iron(II)-triflate complex [TPA2C(O)NHtBuFeII(OTf)][OTf] (4) with PhIO produces the corresponding diiron(III) μ-oxo complex [(TPA2C(O)NHtBuFeIII)2(O)][OTf]4 (5). Mössbauer and magnetic measurements on 5 in the solid-state establish antiferromagnetic coupling between its two Fe(III) centers. Reactions of 4 with the nitrene transfer agents PhINTs (Ts = p-MeC6H4SO2) and PhINNs (Ns = p-NO2C6H4SO2) provide the corresponding iron(III)-amide congeners [TPA2C(O)NHtBuFeIII(NHTs)][OTf]2 (6) and [TPA2C(O)NHtBuFeIII(NHNs)][OTf]2 (7), respectively, affording a rare pair of isolable Fe(III)-amide compounds formed from nitrene transfer. By characterizing well-defined products in the crystalline form, derived from atom and group transfer to seven-coordinate iron, the collective data provide a starting point for the exploration of high-valent and metal-ligand multiply bonded species supported by approximate pentagonal-type ligand fields.  相似文献   

19.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the PH bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

20.
The binuclear cyclopalladated compounds [(SCS)Pd-pz-Pd(SCS)][BF4]2 (pz = pyrazine) 2a, [(SCS)Pd-bipy-Pd(SCS)][BF4]2 (bipy = 4,4′-bipyridine) 2b, [(SCS)Pd-dcb-Pd(SCS)][BF4]2 (dcb = 1,4-dicyanobenzene) 2c and [(SCS)Pd-tmeda-Pd(SCS)][BF4]2 (tmeda = N,N,N′,N′-tetramethylethylenediamine) 2d (SCS = {C6H3-2,6-(CH2SC6H4F-4)2}) were synthesized by a substitution reaction between the pincer unit [Pd(C6H3-2,6-(CH2SC6H4F-4)2)Cl] 1 and the corresponding bidentate nitrogenated ligands. The topology of the bridging ligand between both pincer units induces the aggregation of the organometallic cations in the solid state. The X-ray diffraction molecular structures of complexes 2a and 2d are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号