共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-band EPR spectra of the IR sensitive untreated PSII and of MeOH- and NH3-treated PSII from spinach in the S2-state are simulated with collinear and rhombic g- and Mn-hyperfine tensors. The obtained principal values indicate a 1Mn(III)3Mn(IV) composition for the Mn4 cluster. The four isotropic components of the Mn-hyperfine tensors are found in good agreement with the previously published values determined from EPR and 55Mn-ENDOR data. Assuming intrinsic isotropic components of the Mn-hyperfine interactions identical to those of the Mn-catalase, spin density values are calculated. A Y-shape 4J-coupling scheme is explored to reproduce the spin densities for the untreated PSII. All the required criteria such as a S=1/2 ground state with a low lying excited spin state (30 cm−1) and an easy conversion to a S=5/2 system responsible for the g=4.1 EPR signal are shown to be satisfied with four antiferromagnetic interactions lying between −290 and −130 cm−1. 相似文献
2.
Under the framework of density functional theory, an all-electron calculation on the geometrical structures and dissociation channels of Ti/P binary cluster ions has been carried out. The P2, P3 and P4 structures are found to be the relatively stable units in these cluster ions. The lowest energy geometries of these Ti/P binary cluster ions may be constructed by bonding Ti, Ti2, Ti3 or Ti4 unit with one or two relatively stable P2, P3 and P4 units. The most possible dissociation channels of these Ti/P binary cluster ions are the detachment of P2, P3 or P4 fragment. It is well consistent with the photodissociation experimental results. 相似文献
3.
F. Neese R. Kappl J. Hüttermann W. G. Zumft P. M. H. Kroneck 《Journal of biological inorganic chemistry》1998,3(1):53-67
CW ENDOR (X-band) spectra for the purple mixed-valence [Cu(1.5+)...Cu(1.5+)], S = 1/2, CuA site in nitrous oxide reductase were obtained after insertion of 65Cu or both 65Cu and 15N-histidine. The 14N/15N isotopic substitution allowed for an unambiguous deconvolution of proton and nitrogen hyperfine couplings in the spectra.
A single nitrogen coupling with a value of 12.9 ± 0.4 MHz for 14N was detected. Its anisotropy was characteristic for imidazole bound to copper. A spin density of 3–5% was estimated for
the nitrogen donors to CuA, indicating that the ground state is 2B3u. Proton hyperfine structure was detected from four Cβ protons of coordinating cysteine residues. Their isotropic and anisotropic parts were deconvoluted by spectral simulation.
From the anisotropic couplings a spin density of 16–24% was estimated for each of the cysteine thiolate donors of CuA. The [NHisCu(RS)2CuNHis]+ core structure of CuA in nitrous oxide reductase from Pseudomonas stutzeri is predicted to be similar to the crystallographically determined CuA* structure (Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E, Saraste M (1995) Proc Natl Acad Sci USA 92 : 11955–11959),
but distinct from the CuA structure of Paracoccus denitrificans cytochrome c oxidase (Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376 : 660–669). The angular dependence of the isotropic couplings
as a function of the electronic ground state was calculated by the INDO/S method. The Mulliken atomic-spin populations calculated
by a gradient-corrected density functional method and the semiempirical INDO/S method were compared with experimentally derived
spin populations, and good agreement between theory and experiment was found for both calculations. The ground state of CuA is best represented by the resonance structures of the form [CuIS–S–CuII↔ CuIS•S–CuI↔ CuIS–S•CuI↔ CuIIS–S–CuI]. It is proposed that the Cu 4s,p as well as sulfur 3d orbitals play a role in the stabilization of this novel type of cluster.
Received: 17 September 1997 / Accepted: 28 October 1997 相似文献
4.
Structures of polypyridine mononuclear Ir complexes in the ground state and the lowest triplet state
Naokazu Yoshikawa Shinichi Yamabe Yasushi Kai Keiichi Tsukahara 《Inorganica chimica acta》2009,362(2):361-2891
The structures of eight IrIII centered polypyridine complexes were determined by density-functional-theory calculations. The differences in the optimized geometries between the ground state and the lowest excited triplet state were mainly considered. A crystal structure of [IrCl(bpy)(terpy)](PF6)2 was also obtained by the X-ray diffraction study, where bpy is 2,2′-bipyridine and terpy is 2,2′:6′,2″-terpyridine. The computed geometries are in good agreement with the experimental ones. Those in the triplet biradical states were determined to evaluate the energy difference between the triplet and the ground states. The resulted values correlate well with the observed emission energies. To investigate the nature of the electronic transition involving the ground and the first excited triplet states, a Mulliken population analysis of the spin densities on the eight complexes was performed. The geometric changes from free tterpy ligand {tterpy = 4′-(4-tolyl)-2,2′:6′,2″-terpyridine} to the IrIII complexed ligand, and then to triplet biradical were examined. The planarity enhanced the π-π∗ excitation in the ligand and consequently gave the stable triplet biradical of the complex. It was found that efficient phosphorescence should be impacted by the presence of one coplanar polypyridine ligand. 相似文献
5.
Witold K. Subczynski 《生物化学与生物物理学报:生物膜》2003,1610(2):231-243
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane “rafts” biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 μs, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane. 相似文献
6.
Alain Boussac Ilke Ugur Antoine Marion Miwa Sugiura Ville R.I. Kaila A. William Rutherford 《BBA》2018,1859(5):342-356
In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. Here, we have studied the transition between the low spin (LS) and high spin (HS) configurations of S2 using EPR spectroscopy, quantum chemical calculations using Density Functional Theory (DFT), and time-resolved UV-visible absorption spectroscopy. The EPR experiments show that the equilibrium between S2LS and S2HS is pH dependent, with a pKa?≈?8.3 (n?≈?4) for the native Mn4CaO5 and pKa?≈?7.5 (n?≈?1) for Mn4SrO5. The DFT results suggest that exchanging Ca with Sr modifies the electronic structure of several titratable groups within the active site, including groups that are not direct ligands to Ca/Sr, e.g., W1/W2, Asp61, His332 and His337. This is consistent with the complex modification of the pKa upon the Ca/Sr exchange. EPR also showed that NH3 addition reversed the effect of high pH, NH3-S2LS being present at all pH values studied. Absorption spectroscopy indicates that NH3 is no longer bound in the S3TyrZ state, consistent with EPR data showing minor or no NH3-induced modification of S3 and S0. In both Ca-PSII and Sr-PSII, S2HS was capable of advancing to S3 at low temperature (198?K). This is an experimental demonstration that the S2LS is formed first and advances to S3via the S2HS state without detectable intermediates. We discuss the nature of the changes occurring in the S2LS to S2HS transition which allow the S2HS to S3 transition to occur below 200?K. This work also provides a protocol for generating S3 in concentrated samples without the need for saturating flashes. 相似文献
7.
Spectroscopic and electrochemical study of the [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photochemical reaction and thermodynamic calculations of relevant systems demonstrate the redox character of this process. The photoinduced electron transfer between substrate clusters in excited and ground state (probably via exciplex formation) results in dismutation yielding unstable [Fe(4)(mu(3)-S)(3)(NO)(7)](2-) and [Fe(4)(mu(3)-S)(3)(NO)(7)](0). Back electron transfer between the primary products is responsible for fast reversibility of the photochemical reaction in deoxygenated solutions. In the presence of an electron acceptor (such as O(2), MV(2+) or NO) an oxidative quenching of the (*)[Fe(4)(mu(3)-S)(3)(NO)(7)](-) is anticipated, although NO seems to participate as well in the reductive quenching. The electron acceptors can also regenerate the substrate from its reduced form ([Fe(4)(mu(3)-S)(3)(NO)(7)](2-)), whereas the other primary product ([Fe(4)(mu(3)-S)(3)(NO)(7)](0)) decomposes to the final products. The suggested mechanism fits well to all experimental observations and shows the thermodynamically favored pathways and explains formation of all major (Fe(2+), S(2-), NO) and minor products (N(2)O, Fe(3+)). The photodissociation of nitrosyl ligands suggested earlier as the primary photochemical step cannot be, however, definitely excluded and may constitute a parallel pathway of [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photolysis. 相似文献
8.
Reactions of a single-cubane cluster [{Rh(cod)}2{MoCl(dtc)}2(μ3-S)4] (cod = 1,5-cyclooctadiene, dtc = diethyldithiocarbamate) with 1 equiv. of L (L = pyrazine, 4,4′-bipyridyl, trans-1,2-bis(4-pyridyl)ethylene) in the presence of 2 equiv. of AgBF4 in CH2Cl2 gave doubly bridged double-cubane clusters [({Rh(cod)}2{Mo(dtc)}2(μ3-S)4)2(μ-L)2][BF4]4, whose structures were determined by the single-crystal X-ray analysis. 相似文献
9.
Identification of FX in the heliobacterial reaction center as a [4Fe-4S] cluster with an S = 3/2 ground spin state 总被引:2,自引:0,他引:2
Type I homodimeric reaction centers, particularly the class present in heliobacteria, are not well understood. Even though the primary amino acid sequence of PshA in Heliobacillus mobilis has been shown to contain an F(X) binding site, a functional Fe-S cluster has not been detected by EPR spectroscopy. Recently, we reported that PshB, which contains F(A)- and F(B)-like Fe-S clusters, could be removed from the Heliobacterium modesticaldum reaction center (HbRC), resulting in 15 ms lifetime charge recombination between P798(+) and an unidentified electron acceptor [Heinnickel, M., Shen, G., Agalarov, R., and Golbeck, J. H. (2005) Biochemistry 44, 9950-9960]. We report here that when a HbRC core is incubated with sodium dithionite in the presence of light, the 15 ms charge recombination is replaced with a kinetic transient in the sub-microsecond time domain, consistent with the reduction of this electron acceptor. Concomitantly, a broad and intense EPR signal arises around g = 5 along with a minor set of resonances around g = 2 similar to the spectrum of the [4Fe-4S](+) cluster in the Fe protein of Azotobacter vinelandii nitrogenase, which exists in two conformations having S = (3)/(2) and S = (1)/(2) ground spin states. The M?ssbauer spectrum in the as-isolated HbRC core shows that all of the Fe is present in the form of a [4Fe-4S](2+) cluster. After reduction with sodium dithionite in the presence of light, approximately 65% of the Fe appears in the form of a [4Fe-4S](+) cluster; the remainder is in the [4Fe-4S](2+) state. Analysis of the non-heme iron content of HbRC cores indicates an antenna size of 21.6 +/- 1.1 BChl g molecules/P798. The evidence indicates that the HbRC contains a [4Fe-4S] cluster identified as F(X) that is coordinated between the PshA homodimer; in contrast to F(X) in other type I reaction centers, this [4Fe-4S] cluster exhibits an S = (3)/(2) ground spin state. 相似文献
10.
Bruno Therrien Ludovic Vieille-Petit Georg Süss-Fink 《Inorganica chimica acta》2004,357(11):3289-3294
The trinuclear arene-ruthenium cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+, containing a μ3-oxo cap and three arene ligands that span a hydrophobic pocket above the metal skeleton, has been crystallised as tetrafluoroborate salt in the presence of various guest molecules. The host-guest complexes have been characterised by single-crystal X-ray structure analysis. With chloroform as the guest molecule, a CHCl3 molecule sits perfectly in the hydrophobic pocket, the hydrogen atom being encapsulated inside the cavity. When dioxane is added during the crystallisation process, the cluster forms infinite chains which are connected by a complex network of hydrogen bonds involving the μ3-oxo ligand, water and dioxane molecules. Interestingly, in the presence of phenol, a water molecule is hydrogen-bonded between the μ3-oxo ligand and the phenol molecule, forming a one-dimensional μ3-O ? H2O ? HO hydrogen-bonded chain. Finally, with benzoic acid, a head-to-tail host-guest chain is obtained, the phenyl ring being incorporated in the hydrophobic pocket, while the acid group is hydrogen-bonded to the μ3-oxo ligand. 相似文献
11.
Po-Heng Lin Sarah Eastman Aman Bhatti Melanie Brulotte Tara J. Burchell Gary Enright Muralee Murugesu 《Inorganica chimica acta》2011,375(1):187-192
Structurally unique {Cu12} and {Fe8} cluster complexes were synthesized using 2,2,6,6-tetrakis (hydroxymethyl)cyclohexanol (thcH5) ligand. The polyalcohol thcH5 ligand consists of a six membered ring in a chair confirmation and five pendant alcohol arms providing pentadentate-anchoring points for coordination chemistry. A wide range of reaction conditions was explored with transition metal ions in order to isolate large cluster complexes. Obtained {Cu12} and {Fe8} complexes exhibit unprecedented core topologies where thcH5 encapsulate and bridge between metal centers and mediate magnetic interactions via the superexchange pathways. Both complexes exhibit dominant intramolecular antiferromagnetic interactions leading to singlet spin ground state. 相似文献
12.
13.
嗜盐菌素HalC8基因簇克隆与分析 总被引:2,自引:0,他引:2
采用基因组部分文库及锚定PCR技术,克隆了嗜盐菌素HalC8编码基因及其上下游可能的相关基因共约9.3kb的DNA序列。序列分析表明已知序列至少含有6个ORF,包括上游编码跨膜蛋白的halU基因、编码可能的调节蛋白的halR基因,编码嗜盐菌素HalC8及其免疫蛋白HalⅠ的proC8基因、以及位于proC8基因下游的编码可能的转运蛋白的halT1,halT2和halT3基因。这是国际上首次对嗜盐菌素基因簇可能的相关基因的克隆。 相似文献
14.
Rheal A. Towner Edward G. Janzen Yong-Kang Zhang Shigeto Yamashiro 《Free radical biology & medicine》1993,14(6):677-681
Acute CCl4 hepatotoxicity is thought to occur as a result of free generated from the metabolism of CCl4 in the liver. With the use of MRI it is possible to detect in vivo a CCl4-induced edematous region surrounding the major branch of the hepatic portal vein in the right lobe. Inhibition of the CCl4-induced response has been obtained by pretreatment with the spin trap, PBN, 30 min prior to CCl4 exposure. The inhibitory effect of two new traps, M3PO or methyl-DMPO, and PhM2PO or phenyl-DMPO, on in vivo CCl4-induced acute hepatotoxicity was investigated. Both PhM2PO and M3PO were found to inhibit the CCl4-induced response at lower concentrations (0.35 M/kg body weight) than PBN (0.70 M/kg body weight). However, both M3PO and PhM2PO were also found to induce and edematous response at the same concentrations used for the PBN studies (0.70 M/kg body weight). PhM2PO, at a concentration of 0.35 M/kg body weight, was 93% as efficient as PBN, at a concentration of 0.70 M/kg body weight; whereas M3PO, at a concentration of 0.35 M/kg, was 89% as efficient as PBN at 0.70 M/kg body weight. Electron micrographs were obtained from small liver sections taken in proximity to the major branch of the hepatic portal veins of all treatment groups. The electron microscopy investigations support the MRI findings. 相似文献
15.
Rajesh K. Yadav 《Archives of biochemistry and biophysics》2010,495(2):129-24615
Architecture of hemoprotein is solely responsible for different nature of heme coordination. Here we report that substitution of the acidic surface residue Glu226 to Ala in ascorbate peroxidase from Leishmania major alters the 5 coordinate high spin (5cHS) to a 6 coordinate low spin (6cLS) form at pH 7.5. Using UV-visible spectrophotometry, we show that the sixth ligand of heme in Glu226Ala at pH 7.5 is hydroxo. When the pH is decreased to 5.5, a new species of Glu226Ala appeared that had a spectrum characteristic of a 6cHS derivative. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I was not seen in the Glu226Ala in presence of H2O2. Similarly guaiacol, ascorbate and ferrocytochrome c oxidation rate was 103 orders less for the Glu226Ala mutants compared to the wild type. These data suggested that surface acidic residue Glu226 might play role in proper maintenance of active site conformation. 相似文献
16.
Audrey Mokdad 《Inorganica chimica acta》2010,363(13):3338-3344
The complex [Fe(III)(salten)(mepepy)]BPh4 (salten = 4-azaheptamethylene-1,7-bis(salicylideneiminate; mepepy = 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl)-ethene; BPh4 = tetraphenyl borate) has been investigated to determine the volume and enthalpy changes associated with the room temperature photo-induced spin crossover. Here we report the photophysical properties of the trans to cis isomerization of the mepepy ligand as well as the spin crossover of the Fe(III)(salten)(mepepy) complex in acetonitrile:water mixtures using photoacoustic calorimetry (PAC). The PAC studies indicate that the trans to cis transition of the mepepy ligand occurs faster than the ∼20 ns response time of the acoustic detector and gives rise to a negligible volume change (0.7 ± 0.3 mL mol−1) and an enthalpy change of 33 ± 10 kcal mol−1. These results are consistent with the loss of a charge assisted hydrogen bond between a water molecule and the pyridyl ring of the mepepy upon photoisomerization. In the case of Fe(III)(salten)(mepepy) photoexcitation, PAC results indicate that the high-spin to low-spin transition, also occurring in ?20 ns, gives rise to small volume and enthalpy changes (0.9 mL mol−1 and 4 kcal mol−1). Analysis of the results indicate that the observed thermodynamics are related to a distortion of the Fe(II)(salten)(mepepy) complex associated with the cleavage of an Fe?N bond upon spin conversion. 相似文献
17.
Guzman-Casado M Parody-Morreale A Robic S Marqusee S Sanchez-Ruiz JM 《Journal of molecular biology》2003,329(4):731-743
NMR studies on the denatured states of proteins indicate that residual structure often resides predominantly in hydrophobic clusters. Such hydrophobic cluster formation implies burial of apolar surface and, consequently, is expected to cause a decrease in heat capacity. We report here that, in the case of ribonuclease H from the thermophile Thermus thermophilus, a sharp decrease in denatured-state heat capacity occurs at about pH 3.8; this result points to the formation of hydrophobic clusters triggered by the protonation of several (about four) carboxylic acid groups, and indicates that the burial of apolar surface is favored by the less hydrophilic character of the uncharged forms of Asp and Glu side-chains. The process is not accompanied by large changes in optically active structure, but appears to be highly cooperative, as indicated by the sharpness of the pH-induced transition in the heat capacity. This acid-induced hydrophobic burial in denatured T.thermophilus ribonuclease H is clearly reflected in the pH dependence of the denaturation temperature (i.e. an abrupt change of slope at about pH 3.8 is seen in the plot of denaturation temperature versus pH), supporting a role for such denatured-state hydrophobic clusters in protein stability. The finding of cooperative protonation of several groups coupled to surface burial in denatured T.thermophilus ribonuclease H emphasizes the potential complexity of denatured-state electrostatics and advises caution when attempting to predict denatured-state properties on the basis of simple electrostatic models. Finally, our results suggest a higher propensity for hydrophobic cluster formation in the denatured state of T.thermophilus ribonuclease H as compared with that of its mesophilic counterpart from Escherichia coli. 相似文献
18.
Suzanne L. Shea 《Inorganica chimica acta》2005,358(5):1709-1714
Reaction of [{RuCl2(η6-MeC6H4isoPr)}2] with syn-[B18H22] and non-nucleophilic base results in [8-(η6-MeC6H4isoPr)-8-RuB17H21], of 18-vertex anti 10-vertex-nido-10-vertex-nido configuration, as the predominant product. The syn → anti configurational change arises from a trans-cluster pseudo-vertex-substitution of a {BH} vertex by the {Ru2(η6-MeC6H4isoPr)} centre. 相似文献
19.
Yean-Sung Jung I. R. Vassiliev J. H. Golbeck 《Journal of biological inorganic chemistry》1997,2(2):209-217
PsaC is a tightly bound ferredoxin in the Photosystem I (PS I) reaction center which contains two [4Fe-4S] clusters named
FA and FB. We recently proposed that the mixed-ligand FB cluster in C14DPsaC and the mixed-ligand FA cluster in C51DPsaC exist in a spin state of S=3/2, and that a spin state crossover to S=1/2 occurs when the PsaC mutants are rebound onto P700-FX cores. Since EPR signals from a highly rhombic S=3/2 spin state can be difficult to study, wild-type PsaC was reconstituted with iron and selenium to introduce an easily
detected S=7/2 spin state similar to that shown for Clostridial ferredoxin. When the unbound [4Fe-4Se] PsaC was chemically reduced, a sharp derivative resonance was found at g=5.171 attributed to the excited ±3/2 doublet from an S=7/2 spin multiplet. An additional peak was found at g=5.616 attributed to the superimposed ±1/2 and ±3/2 doublets from a highly rhombic S=3/2 spin multiplet, and an axial set of resonances found around g=2.0 attributed, in part, to a classical S=1/2 spin state. When the [4Fe-4Se] PsaC was rebound onto P700-FX cores, the spin population derived from the S=7/2 and 3/2 spin states was negligible. Illumination of the rebuilt PS I complex at 15 K resulted in two rhombic sets of
resonances, one with g values of 2.043, 1.941 and 1.854, diagnostic of FA, and the other with g values of 2.067, 1.941 and 1.878, diagnostic of FB. Chemical reduction with sodium dithionite at pH 10.5 or photoaccumulation by freezing during illumination resulted in a
set of resonances with g values of 2.046, 1.938, 1.920 and 1.883, characteristic of a spin-coupled FA
–/FB
– pair. The spin state crossover in this iron chalcogenide cluster is the first known to be induced by protein-protein association
and reinforces the hypothesis that an S=3/2 to 1/2 crossover occurs in the PS I-rebound mutants C14DPsaC and C51DPsaC.
Received: 6 August 1996 / Accepted: 28 December 1996 相似文献
20.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL. 相似文献