首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two lanthanide coordination polymers, {[La2(bpdc)3(H2O)4]·(H2O)4}n (1) and {[Sm2(bpdc)3(H2O)2]·(H2O)5}n (2) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid) have been obtained by hydrothermal synthesis. Single-crystal X-ray diffraction shows that 1 and 2 are two-dimensional network structures based on the zigzag chains which are linked by bpdc ligands, forming the first examples of binary lanthanide polymers with bpdc. It is unprecedented that the adjacent zigzag chains are symmetrical in mirror images with the arraying form of ?ABAB?. In 1 and 2, lanthanide ion are all nine-coordinate and bpdc ligands exhibit different kinds of coordination modes. The 1-D infinite water chain in 1 and pentameric water ring in 2 have been found between lattice water molecules. Thermo-gravimetric analyses of 1 and 2 display considerable thermal stability. Photoluminescent properties of 1 and 2 are discussed.  相似文献   

2.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

3.
The reactions of 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2bpdc) and 1,10-phenanthroline (phen) with lanthanide (III) salts in different concentrations under hydrothermal conditions formed two series of supramolecular isomers of 1D zigzag chains of [Ln(bpdc)1.5(phen)(H2O)]n·3nH2O (1Ln·3H2O), and 2D frameworks of [Ln(bpdc)1.5(phen)(H2O)]n (2Ln), (Ln = Ho, Er, Tm, and Yb). At lower concentrations, the supramolecular isomers of 1Ln were formed, in which each isomer has a dinuclear centrosymmetric dimeric unit of [Ln2(phen)2(H2O)22-bpdc)2]2+, and the dimeric units are alternately connected by μ2-bpdc2− to form a 1D zigzag chain of 1Ln. At higher concentrations, the supramolecular isomers of 2Ln were formed. All the compounds of 2Ln are isomorphous, in which two μ3-bpdc2− bridge two [Ln(phen)(H2O)]3+ units to yield a 1D double-chains of [Ln2(phen)2(H2O)2(bpdc)2]n2n+, and [Ln2(phen)2(H2O)2(bpdc)2]n2n+ chains are further connected by μ4-bpdc2− to form a 2D network of [Ln(bpdc)1.5(phen)(H2O)]n. The 2D sheets are combined through the intersheet π-π interactions between the adjacent phen molecules to form a 3D structure of 2Ln. The compounds of Er(III), and Yb(III) exhibit corresponding characteristic photoluminescence in the near-infrared (NIR) region, in which 1Ln and 2Ln show obviously different emission intensity due to their different structures.  相似文献   

4.
Two organic-inorganic hybrid polymers, {[Tb(μ2-bp3dc)(NO3)(H2O)4] · 2H2O}n (1) and {[Ni(μ22-bp3dc)(H2O)3] · H2O}n (2) (bp3dc = 2,2′-bipyridine-3,3′-dicarboxylate) have been hydrothermally synthesized from 2,2′-bipyridine-3,3′-diformylhydrazide (bp3dh) and characterized by the elemental analyses, IR spectrum, TG analysis and the single crystal X-ray diffraction. Polymer 1 shows a 1D linear chain structure, in which extensive hydrogen bonding between the deprotonated carboxylates, nitrate ions, and coordinated water molecules result in a 3D network which also contains face-to-face π-π interactions between adjacent bp3dc ligands. Polymer 2 is a 1D helical chain, and the interchain hydrogen bonding interactions also contribute to the final 3D network. The bridging bp3dc ligands in 1 adopt the anti-bridging bidentate mode, while that in 2 adopt the chelating bridging tridentate mode. The solid-state magnetic properties of the Tb and Ni complexes demonstrated the presence of weak antiferromagnetic exchange interactions, caused by interaction between the neighbouring ions along the 2,2′-bipyridine-3,3′-dicarboxylate bridged chain.  相似文献   

5.
Five new supramolecular lanthanide coordination polymers with three different structures, {[La2(IA)3(phen)2] · 2H2O}n (1), {[Ln(IA)1.5(phen)] · xH2O}n [x = 1, Ln = Eu (2); x = 0.25, Ln = Dy (3)], and [Ln(IA)1.5(phen)]n [Ln = Er (4); Yb (5)], were prepared by hydro- and solvothermal reactions of lanthanide chlorides with itaconic acid (H2IA) and 1,10-phenanthroline (phen), and structurally characterized by single crystal X-ray diffraction. 1 Comprises 1-D double-chains that are further assembled to a 3-D supramolecular structure via hydrogen bonds and π-π stacks between phen molecules. 2 and 3 have 2-D infinite networks which are further constructed to form 3-D supramolecular architectures with 1-D channels by π-π aromatic interactions. 4 and 5 have 2-D layer structures consisting of three types of rings which are further architectured to form 3-D supramolecular structures by C-H?O hydrogen bonds. The H2IA ligands are all completely deprotonated and exhibit tetra-, penta-, and hexadentate coordination modes in the titled complexes. The high-resolution emission spectrum of 2 shows only one Eu3+ ion site in 2, which is in agreement with the result of X-ray diffraction. And the magnetic property and the thermal stability of 2 were also investigated.  相似文献   

6.
One-dimensional (1-D) helical coordination polymers, [MII(H2O)3(BPDC)]n · nH2O (M = Co (1), Fe (2)), have been prepared by the self-assembly of cobalt(II) and iron(II) ions, respectively, with 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2BPDC) in an aqueous solution. X-ray crystal structures of compounds 1 and 2 show that each metal ion displays a distorted octahedral coordination geometry including three water oxygen atoms, one oxygen atom of the carboxylate of a BPDC2− belonging to the adjacent metal ion and two nitrogen atoms from the BPDC2− acting as a chelating ligand. In 1 and 2, one carboxylate oxygen atom of coordinated BPDC2− binds to the neighboring metal ion, which give rise to 1-D helical coordination polymers. The helical chains of 1 and 2 are linked by the hydrogen bonding interactions between the carboxylate oxygen atom of the BPDC2− ion belonging to a chain and the water molecule of the adjacent helical chain, which lead to 2-D networks extending along the ab plane. The supramolecules 1 and 2 show isomorphous structures regardless of the metal ions.  相似文献   

7.
Reaction of [Mn(2,2′-bpy)2(OAc)](ClO4)(H2O) with a series of aromatic carboxylic acids yields new Mn(II)carboxylates [Mn(2,2′-bpy)2(L)](ClO4)}2 (1-3), [Mn(2,2′-bpy)2(L)2] (4-5) and [Mn(2,2′-bpy)2(L)(H2O)](ClO4) (6) (L = 2-aminobenzoate (2-aba) (1), 4-hydroxybenzoate (4-hba) (2), thiophene-2-carboxylate (2-tca) (3), 2-hydroxynapthoate (2-hnapa) (4), 3,5-diisopropylsalicylic acid (dipsa) (5), 2,4,6-triisopropylbenzoate (tipba) (6)). The new compounds have been characterized with the aid of elemental analysis, spectroscopy, and single-crystal X-ray diffraction studies. Compounds 1-3, which have been synthesized from less bulky carboxylic acids, are dimeric in the solid-state. Compounds 4-6, which are derived from more bulkier aromaric carboxylic acids, exist as monomeric complexes. In the case of 6, where very bulky 2,4,6-triisopropyl benzoic acid is used as the starting material, only one carboxylate ligand binds to the metal, resulting in a cationic complex. Interestingly in all the six complexes, the C-H hydrogen atoms of the 2,2′-bpy ligands are involved in extensive hydrogen bonding with the carboxylate oxygen atoms of the adjacent molecules and hence form non-covalent 1-D or 2-D aggregates in the solid state.  相似文献   

8.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

9.
The new complex, [RuII(bpy)2(4-HCOO-4′-pyCH2 NHCO-bpy)](PF6)2 · 3H2O (1), where 4-HCOO-4′-pyCH2NHCO-bpy is 4-(carboxylic acid)-4′-pyrid-2-ylmethylamido-2,2′-bipyridine, has been synthesised from [Ru(bpy)2(H2dcbpy)](PF6)2 (H2dcbpy is 4,4′-(dicarboxylic acid)-2,2′-bipyridine) and characterised by elemental analysis and spectroscopic methods. An X-ray crystal structure determination of the trihydrate of the [Ru(bpy)2(H2dcbpy)](PF6)2 precursor is reported, since it represented a different solvate to an existing structure. The structure shows a distorted octahedral arrangement of the ligands around the ruthenium(II) centre and is consistent with the carboxyl groups being protonated. A comparative study of the electrochemical and photophysical properties of [RuII(bpy)2(4-HCOO-4′-pyCH2NHCO-bpy)]2+ (1), [Ru(bpy)2(H2dcbpy)]2+ (2), [Ru(bpy)3]2+ (3), [Ru(bpy)2Cl2] (4) and [Ru(bpy)2Cl2]+ (5) was then undertaken to determine their variation upon changing the ligands occupying two of the six ruthenium(II) coordination sites. The ruthenium(II) complexes exhibit intense ligand centred (LC) transition bands in the UV region, and broad MLCT bands in the visible region. The ruthenium(III) complex, 5, displayed overlapping LC bands in the UV region and a LMCT band in the visible. 1, 2 and 3 were found, via cyclic voltammetry at a glassy carbon electrode, to exhibit very positive reversible formal potentials of 996, 992 and 893 mV (versus Fc/Fc+) respectively for the Ru(III)/Ru(II) half-cell reaction. As expected the reversible potential derived from oxidation of 4 (−77 mV (versus Fc/Fc+)) was in excellent agreement with that found via reduction of 5 (−84 mV (versus Fc/Fc+)). Spectroelectrochemical experiments in an optically transparent thin-layer electrochemical cell configuration allowed UV-Vis spectra of the Ru(III) redox state to be obtained for 1, 2, 3 and 4 and also confirmed that 5 was the product of oxidative bulk electrolysis of 4. These spectrochemical measurements also confirmed that the oxidation of all Ru(II) complexes and reduction of the corresponding Ru(III) complex are fully reversible in both the chemical and electrochemical senses.  相似文献   

10.
We have reported main group metal chalcogenido clusters of cubic [InQ(phen)Cl]4 (Q = S (1) and Se (2); phen = 1,10-phenanthroline). Herein two new cubic clusters with ligand of 2,2′-bipyridine (bpy) have been synthesized by solvothermal technique, [InSe(bpy)Cl]4 (3) and [InS(bpy)Cl]4·H2O (4). The molecular structures and electronic states of compounds 3 and 4 are presented by comparing with those of 1 and 2. Though the clusters of 1-4 are similar, their packing structures show diverse modes. Spectroscopic study and theoretical calculation indicate that introducing phen/bpy to chalcogenido clusters can decrease the energy gap of frontier orbitals from HOMO to LUMO due to the cluster to ligand charge-transfer (CLCT). Increasing the conjugated system of the organic ligand or using the heavier chalcogenido element might improve the photophysical absorption of the materials.  相似文献   

11.
Four structurally diverse complexes, [Cd(dppz)(bdoa)]n (1), [Zn(dppz)(bdoa)(H2O)]n (2), [Fe(dppz)2(bdoa)]n·2nH2O (3), and [Co2(dppz)2(bdoa)2(H2O)]n·3nH2O (4), where H2bdoa = benzene-1,4-dioxyacetic acid and dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been hydrothermally synthesized. Compounds 1-4 feature chain structures. There exist π-π interactions in the structures of 1, 2 and 4. Two neighboring chains of 1 are linked through the π-π interactions into a double chain supramolecular structure. The chains of 2 and 4 are further extended by the π-π interactions to form 3D and 2D supramolecular structures, respectively. The structural differences among such complexes show that the transition metals have important influences on their structures. The photoluminescent property of complex 2 and the magnetic property of complex 4 have also been investigated.  相似文献   

12.
By the reactions of Cu(AcO)2·H2O and Cu(HCOO)2·4H2O with 4,4′-dimethyl-2,2′-bipyridine and 5,5′-dimethyl-2,2′-bipyridine the compounds [Cu(AcO)2(4,4′-Me2-2,2′-bipy)]·1/2H2O (1), [Cu(AcO)2(5,5′-Me2-2,2′-bipy)(H2O)] (2), [Cu(HCOO)(μ-HCOO)(4,4′-Me2-2,2′-bipy)]n·nH2O (3) and [Cu(HCOO)(μ-HCOO)(5,5′-Me2-2,2′-bipy)]n·2nH2O (4) were obtained. In the acetate complexes, 1 and 2, the geometry around copper is distorted octahedral and square pyramidal, respectively. Dimeric units of different geometry are formed in both cases through hydrogen bonds in which non-coordinated (in 1) and coordinated (in 2) water molecules are involved. The structures of 3 and 4 consist of polymeric monodimensional chains of square pyramidal copper units linked by axial-equatorial syn-anti (3) or anti-anti (4) bridging formate groups. Water molecules form hydrogen bonds with formate groups of the same chain in compound 3. In compound 4 the water molecules link the polymeric contiguous chains of complex through hydrogen bonds with oxygen atoms of formate groups and they are also linked between them, forming monodimensional water chains which run parallel to the complex chains. Sheets parallel to the ac plane are formed by alternating chains of water and polymeric complex. Magnetic properties and EPR spectra for these compounds have been studied.  相似文献   

13.
Three new homopolynuclear complexes with azido bridges have been obtained by using [Cu(AA)(BB)]+ building-blocks (AA = acetylacetonate; BB = 1,10-phenanthroline or 2,2′-bipyridine). The reaction between [Cu(acac)(phen)(H2O)](ClO4) and NaN3 leads to a mixture of two compounds: a binuclear complex, [{Cu(acac)(phen)}21,3-N3)](ClO4) · 2H2O (1), and a linear tetranuclear one, [{Cu(acac)(phen)(ClO4)}2{Cu(phen)(μ1,1-N3)2}2] (2). The reaction between [Cu(acac)(bipy)(H2O)](ClO4) and NaN3 affords also a mixture of two compounds: [{Cu(acac)(bipy)}21,3-N3)]3(ClO4)3 · 3.75H2O (3) and [Cu(acac)(bipy)(N3)][Cu(acac)(bipy)(H2O)](ClO4) (4). The X-ray crystal structures of compounds 1-4 have been solved (for compound 4 the crystal structure was previously reported). In compounds 1 and 3, two {Cu(AA)(BB)} fragments are bridged by the azido anion in an end-to-end fashion. Two isomers, cis and trans with respect to azido bridge, were found in crystal 3. The structure of compound 2 consists of two Cu(II) central cations bridged by two μ1,1-azido ligands, each of them being also connected to a {Cu(acac)(phen)} fragment through another μ1,1-azido ligand. The cryomagnetic properties of the compounds 1 and 2 have been investigated and discussed. The magnetic behaviour of compound 1 shows the absence of any interactions between the metallic ions. In the tetranuclear complex 2, the magnetic interactions between the external and central copper(II) ions(J1), and between the central metallic ions (J2) were found ferromagnetic (J1 = 0.36 cm−1, J2 = 7.20 cm−1).  相似文献   

14.
Hua Jin 《Inorganica chimica acta》2007,360(10):3347-3353
Three new organic-inorganic hybrid compounds [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(2,2′-bipy)(4,4′-Hbipy)][CuI(4,4′-bipy)]2[P2W18O62] · 3H2O (1), [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(4,4′-bipy)]2[PW12O40] · 0.25H2O (2), and[CuI(4,4′-bipy)]3[PMo12O40] · en · 3H2O (3) (2,2′- bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. Compound 1 represents the first 1D ladderlike structure formed by Dawson-type polyoxoanion [P2W18O62]6− and coordination polymer with mixed 4,4′-bipy and 2,2′-bipy ligands. The novel structure of 2 is composed of 1D hybrid zigzag chains linked by chains into a 3D framework. In compound 3, the [PMo12O40]3− clusters are hung on chains to form a new 1D chain.  相似文献   

15.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

16.
[Ru(2,2′-bipyridine)2(Hdpa)](BF4)2 · 2H2O (1), [Ru(1,10-phenanthroline)2(Hdpa)] (PF6)2 · CH2Cl2 (2) and [Ru(4,4,4′,4′-tetramethyl-2,2′- bisoxazoline)2(Hdpa)] (PF6)2 (3) are synthesized where Hdpa is 2,2′-dipyridylamine. The X-ray crystal structures of 1 and 2 have been determined. Hdpa in 1 and 2 is found to bind the metal via the two pyridyl N ends. Comparing the NMR spectra in DMSO-d6, it is concluded that 3 has a similar structure. The pKa values (for the dissociation of the NH proton in Hdpa) of free Hdpa and its complexes are determined in acetonitrile by exploiting molar conductance. These correlate linearly with the chemical shift of the NH proton in the respective entities.  相似文献   

17.
Reactions of AgClO4, Zn(CH3COO)2 · H2O and CuI with the ligand 4,4′-dipyridylsulfide (dps) in 1:1 ratio give rise to coordination polymers 1-3 and 5, the structures of which were characterized by X-ray crystallography. Polymers [Ag2(dps)2](ClO4)2 · MeCN (1) and [Ag2(dps)22-MeCN)(MeCN)](ClO4)2 · MeCN · H2O (2) are pseudo-supramolecular isomers, differing from each other in the coordination geometry of silver atom and the packing pattern. Both 1 and 2 are zigzag coordination polymers bridged by weak Ag?Ag, Ag?S or Ag?NC-CH3 interactions to form double stranded coordination polymers. While [Zn(dps)(CH3COO)2] (3) is a zigzag single stranded coordination polymer, [Zn(dps)2(H2O)2](ClO4)2 · H2O (4) is an unusual mononuclear complex with a box-like structure. Interesting intermolecular hydrogen bonding present in the compounds 3 and 4 leads to 3D hydrogen-bonded network structure.Coordination polymer [Cu2I2(dps)2] (5) is a non-interpenetrating (4,4) net. Photoluminescence properties of the compounds 1-5 have been examined in solid states at room temperature. These compounds have been found to exhibit yellow and blue photoluminescence.  相似文献   

18.
For reactions of [{RuCl(bpy)2}2(μ-BL)]2+ (bpy = 2,2′-bipyridine, BL = H2N(CH2)nNH2 (n = 4-8, 12), [Ru2-BL]2+) with mononucleotides, the MLCT absorption bands of [Ru2-BL]2+ blue-shifted with hyperchromism for GMP and hypochromism for TMP with time. Reactions of [Ru2-BL]2+ with GMP or TMP proceed via initial Cl ions replacement by coordination to N7 of GMP and N3 of TMP, respectively. In competition binding experiments for [Ru2-BL]2+ with GMP versus TMP, only GMP selectively coordinated to ruthenium(II). For reactions with calf thymus (CT) DNA, [Ru2-BL]2+ complexes selectively bind to guanine residues of DNA. The higher degrees of binding of [Ru2-BL]2+ to CT-DNA were observed with increasing n values for H2N(CH2)nNH2, which may be explained by the length of the bridging ligands. Studies on the inhibition of the restriction enzyme Acc I revealed that [Ru2-BL]2+ complexes appear to be covalently favorable for the type of difunctional binding. In addition, it is very interesting to observe that circular dichroism spectroscopy of the supernatants obtained following the reactions of CT-DNA with racemic [Ru2-BL]2+ show enrichments of the solutions in the ΔΔ isomers, demonstrating preferences of the ΛΛ isomers for covalent binding to CT-DNA.  相似文献   

19.
Five new lanthanide complexes [Ln2(DTDN)4(phen)4]·7H2O·2H3O+ (Ln = Nd (1), Sm (2), Eu (3), Tb (4), Dy (5), H2DTDN = 2,2′-dithiodinicotinic acid, phen = 1,10-phenanthroline) have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, and TG analyses. By in situ oxidation of 2-mercaptonanicotinic acid (2-H2MN), the expected ligand H2DTDN was generated. All crystals are isostructural and crystallize in monoclinic system with space group C2/c. The metal center is eight-coordinated completely by four carboxylic oxygen atoms from four different DTDN2− ligands, and four nitrogen atoms from two phen molecules with a distorted square-antiprismatic geometry. The structures can be considered as two-dimensional (2D) structures and further linked by hydrogen bonds into the final trinodal 4-connected network. Photoluminescence studies revealed that complexes 2-5 exhibit strong fluorescent emission bands in the solid state at room temperature.  相似文献   

20.
《Inorganica chimica acta》2004,357(7):1997-2006
Five new lanthanide complexes displaying crotonato bridges have been prepared: [Gd2(crot)6(H2O)4] · 4(bpa) (1); [Ho2(crot)7]n · (Hbpa) (2); [Gd2(crot)6(bipy)2] (3); [Ho2(crot)6(bipy)2] (4) and [Nd2(crot)6(H2O)3]n (5), where bipy=2,2-bipyridine; bpa=di(2-pyridyl)amine; crot=crotonato. The compounds were characterized by magnetic susceptibility measurements and their crystal structures were determined by single crystal X-ray diffraction. These studies showed complexes 1, 3 and 4 to be dimers while structures 2 and 5 are polymeric in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号