首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new ternary lanthanide complexes Ln(TFNB)3L (where Ln = Eu, Sm, Nd, Er, Yb, TFNB = 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate, L = 1-(4-carbazolylphenyl)-2-pyridinyl benzimidazole) have been synthesised. The photoluminescence properties and TGA of them are described in detail. The trifluorinated ligand TFNB displays excellent antenna effect to sensitize the Ln(III) ions to emit characteristic spectra. The carbazole-containing ligand L is testified to be an outstanding synergistic ligand. The luminescence properties investigated and the quantum efficiency measured in dichloromethane solution of Eu(TFNB)3L and Sm(TFNB)3L show that the carbazole moiety is good at absorbing energy to sensitize the metal-centered emitting states and can make the complexes more rigid, provide efficient shielding of the Ln(III) core towards external quenching compared with the reference complexes of Eu(TFNB)3(Pybm) and Sm(TFNB)3(Pybm) (Pybm = 2-(2-pyridine)-benzimidazole) which have no carbazole unit. The quantum efficiency of Eu(TFNB)3L in air-equilibrated CH2Cl2 solution is calculated to be 14.8% by using air-equilibrated aqueous [Ru(bpy)3]2+·2Cl solution as reference sample (Φstd = 2.8%).  相似文献   

2.
The electrochemical behavior and thermodynamic properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) were studied in 1-butyl-3-methylimidazolium bromide ionic liquid (BmimBr) at a glassy carbon (GC) electrode in the range of 293–338 K. The electrode reaction of Eu(III) was found to be quasi-reversible by the cyclic voltammetry, the reactions of the other three lanthanide ions were regarded as irreversible systems. An increase of the current intensity was obtained with the temperature increase. At 293 K, the cathodic peak potentials of −0.893 V (Eu(III)), −0.596 V (Sm(III)), −0.637 V (Dy(III)) and −0.641 V (Nd(III)) were found, respectively, to be assigned to the reduction of Ln(III) to Ln(II). The diffusion coefficients (D o), the transfer coefficients (α) of Ln(III) (Ln = Eu, Sm, Dy, Nd) and the charge transfer rate constants (k s) of Eu(III) were estimated. The apparent standard potential (E 0*) and the thermodynamic properties of the reduction of Eu(III) to Eu(II) were also investigated.  相似文献   

3.
Treatment of Ln(NO3)3 · 6H2O with 1, 2-phenylenedioxydiacetic acid (H2PDOA) in ethanol leads to the unusual 1-D double chain complexes {[Ln(PDOA)1.5 (H2O)3] · H2O}n (Ln = Sm (1), Eu (2), Dy (3)), in which the Ln3+ ions are linked by pentadentate and bideatate PDOA ligands in two different directions. The chain looks like a ladder containing two -Ln-O-C-O-Ln- chains and PDOA spacers, which has never been observed in the lanthanide carboxylate complexes, and they exhibit different photoluminescence properties.  相似文献   

4.
New solid complex compounds of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin were synthesized. The molecular formula of the complexes is Ln(C15H9O7)3 · nH2O, where Ln is the cation of lanthanide and n = 6 for La(III), Sm(III), Gd(III) or n = 8 for Ce(III), Pr(III), Nd(III) and Eu(III). Thermogravimetric studies and the values of dehydration enthalpy indicate that water occurring in the compounds is not present in the inner coordination sphere of the complex. The structure of the complexes was determined on the basis of UV-visible, IR, MS, 1H NMR and 13C NMR analyses. It was found that in binding the lanthanide ions the following groups of morin take part: 3OH and 4CO in the case of complexes of La, Pr, Nd, Sm and Eu, or 5OH and 4CO in the case of complexes of Ce and Gd. The complexes are five- and six-membered chelate compounds.  相似文献   

5.
Dinuclear lanthanide complexes of the general for Ln2(TTA)4(PAN)2 (Ln = Eu, Gd, Tb, Yb; TTA and monodeprotonated thenoyltrifluoroacetone and PAN 1-(2-pyridylazo)-2-naphthol, respectively) were prepared and structurally characterized. These novel complexes, representing the first examples of crystallographically characterized lanthanide-PAN complexes, each feature a dinuclear core with the metal atoms bridged by the phenolato O atoms of the chelating-bridging PAN ligands. Electronic spectroscopic and photoluminescence studies were carried out for the Eu(III) complex, and the results are consistent with ligand-mediated energy transfer and ligand-sensitized luminescence characteristic of Eu(III). The Eu(III) complex doped into a polymeric film was shown to effectively limit a nanosecond 523-nm laser pulse, and the limiting effect is rationalized in terms of reverse saturable absorption due to the strong absorption of the metal’s excited triplet states that are populated by intersystem crossing.  相似文献   

6.
Six novel heterometallic Zn-Ln coordination polymers {[ZnLnCl(pydc)2(H2O)6]·3H2O}n (Ln = Nd 1, Pr 2, Sm 3, Eu 4, Tb 5, Dy 6; pydc = pyridine-2,5-dicarboxylate) were synthesized by the hydrothermal method, and their structures were measured by the single-crystal X-ray diffraction. The IR and UV-Vis-NIR absorption spectra, and the luminescence spectra in the visible and near-infrared (NIR) regions of the six complexes were determined at room temperature. They possess the same crystal structure, and the Zn(II) and Ln(III) ions in each complex are bridged into 1D infinite chain by pyridine-2,5-dicarboxylates. Meanwhile, there are numerous hydrogen bonds which result in the 3D hydrogen bonding network in the crystal. In the visible and NIR regions, the emission spectra of the complexes show the characteristic bands of the corresponding Ln(III) ions, which are mainly attributed to the sensitization from the d-L-moiety to f-L-moiety after forming the Zn-Ln complexes. In this paper, we first report the Zn-Sm complex which can exhibit the emission bands of Sm(III) in the NIR region, and discuss the sensitization from the d-L-moiety to f-L-moiety on the basis of the different characteristics of levels for different Ln(III) ions.  相似文献   

7.
Five lanthanide coordination polymers with composition {[Ln(pzdc)1.5(H2O)3] · 0.5H2O}, (Ln = Pr, 1; Nd, 2; Sm, 3; Eu, 4; Gd, 5; pzdc = 2,5-pyrazinedicarboxylate), have been synthesized by reacting Ln(NO3)3 · 6H2O with 2,5-pyrazinedicarboxylic acid under hydrothermal condition in the absence of additional base and characterized by elemental analysis, IR spectra and TG analysis, as well as single-crystal X-ray diffraction. They crystallize isostructurally in the triclinic space group P-1 and the cell parameters agree with the ionic radii of the Ln(III) ions. Each trivalent rare earth ion is nine coordinate in an N2O7 environment. The ligand 2,5-pyrazinedicarboxylate adopts three coordination modes, through which the lanthanide ions are linked together to form an infinite three dimensional structure. A 1D channel exists along the (1 0 0) direction which accommodates uncoordinated water by hydrogen bonds. Heating of 4 at 120 °C evacuated the uncoordinated water while retaining its single crystallinity with only minor change in cell parameters (crystal 6, [Eu(pzdc)1.5(H2O)3]). This hydrophilic ultramicroporous channel is selective to accommodate water only among common solvents, which has some potential interest for solvent separation.  相似文献   

8.
The reactions of pyridine-2,6-dicarboxamide with europium(III) and terbium(III) triflates led to the formation of mononuclear complexes of formula [Ln(pcam)3](CF3SO3)3 (Ln = Eu 1, Tb 2; pcam stands for pyridine-2,6-dicarboxamide). From single-crystal X-ray diffraction analysis, the complexes were found to be isomorphous and isostructural. The [Ln(pcam)3]3+ cations and triflate counterions are connected by intermolecular hydrogen bonds, resulting in a 3D network structure. Both the europium(III) and terbium(III) complexes exhibit efficient ligand sensitized luminescence in the visible region with lifetimes of 1.9 ms and 2.2 ms, respectively, in the solid state.  相似文献   

9.
Luminescence excitation spectroscopy of the 7F05D0 transition of the Eu(III) complex of 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (TCMC, an amide derivative of DOTA) is used to measure the stability constant of the complex (K). A log K value of 10.6 is obtained for [Eu(TCMC)]3+ at 25 °C and an ionic strength of 0.1 M. Competition experiments with eleven other members of the lanthanide(III) series give stability constants for their complexes with TCMC. An unusual variation in stability is observed for complexes of [Ln(TCMC)]3+ across the lanthanide series with a pronounced optimum for the Sm(III) complex. This variation is quite different from that observed for other Ln(III) macrocyclic complexes, suggesting that the TCMC ligand is uniquely sensitive to Ln(III) ion radius.  相似文献   

10.
Jun Li 《Inorganica chimica acta》2007,360(11):3504-3510
Three lanthanide complexes of 4-acyl pyrazolone derivatives: Ln(PMPP-SHZ)2(CH3OH)2 (Ln = Sm (1), Eu (2), Gd (3); PMPP-SHZ = N-(1-phenyl-3-methyl-4-propionyl-5-pyrazolone)-salicylidene hydrazide) have been synthesized and structurally characterized by X-ray crystallography. And all of them were carefully investigated by elemental analysis, thermal analysis and spectral characterization. The fluorescence of these three complexes 1-3 in solid state was investigated at room temperature. All complexes emit a blue emission band, and there are three characteristic emission peaks of Sm3+ evidently and one characteristic emission peak of Eu3+.  相似文献   

11.
Synthesis and spectroscopic characterization of new lanthanide complexes [Ln(QAD)3(EtOH)(H2O)], (Ln = Tb, Eu; HQAD = 1-phenyl-3-methyl-4-adamantylcarbonyl-pyrazol-5-one), [H3O][Tb(QAD)4], [Ln(QAD)3(N-N)] (Ln = Tb, Eu; N-N = 1,10-phenanthroline (Phen), 2,2′-bipyridyl (Bipy), 4,4′-dimethyl-2,2′-bipyridyl (4,4′-Me2Bipy)) are reported. The crystal structures of the proligand HQAD and of complexes [H3O][Tb(QAD)4] and [Tb(QAD)3(4,4′-Me2Bipy)] have been determined. In both complexes the lanthanide ions are in a square antiprismatic environment, the H3O+ cation in the former acid complex being stabilized by H-bonding. Luminescence studies have been performed on selected derivatives.  相似文献   

12.
In this paper, we report the synthesis and the characterization of a novel series of lanthanide (III) complexes with two potentially hexadentate ligands.The ligands contain a rigid phenanthroline moiety and two flexible hydrazonic arms with different donor atom sets (NNN′N′OO and NNN′N′N″N″, respectively for H2L1 (2,9-diformylphenanthroline)bis(benzoyl)hydrazone and H2L2 (2,9-diformylphenanthroline)bis(2-pyridyl)hydrazone).Both nitrate and acetate complexes of H2L1 with La, Eu, Gd, and Tb were prepared and fully characterized, and the X-ray crystal structure of the complex [Eu(HL1)(CH3 COO)2] · 5H2O is presented.The stability constants of the equilibria Ln3+ + H2L1 = [Ln(H2L1)]3+ and Ln3+ + (L1)2− = [Ln(L1)]+ (Ln = La(III), Eu(III), Gd(III), and Tb(III)) are determined by UV spectrophotometric titrations in DMSO at t = 25 °C. The nitrate complexes of H2L2 with La, Eu, Gd and Tb were also synthesized, and the X-ray crystal structures of [La(H2L2)(NO3)2(H2O)](NO3), [Eu(H2L2)(NO3)2](NO3) and [Tb(H2 L2)(NO3)2](NO3) are discussed.  相似文献   

13.
A pyridine‐diacylhydrazone Schiff base ligand, L = 2,6‐bis[(3‐methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X‐ray diffraction. Lanthanide complexes, Ln–L, {[LnL(NO3)2]NO3.xH2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra‐red (FT‐IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln–L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO3)2]+ complexes were carried out at the B3LYP/6–31G(d) level of theory. The FT‐IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln–L indicated that Tb–L and Eu–L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln–L complexes show higher antioxidant activity than the parent L ligand.  相似文献   

14.
Two lanthanide(III) complexes with l-glutamate ligands [{Ln2(l-Glu)2(H2O)8} · 4(ClO4) · 2.5H2O]n (Ln = Gd (1), Eu (2)) have been prepared and characterized by single-crystal X-ray diffraction. The compounds are isomorphous with infinite cationic 2D layers stacked together by secondary bonds. The building blocks are slightly different non-centrosymmetric dinuclear units placed in alternating layers, the resulting structures thus containing four non-equivalent Ln metal sites. The dinuclear units contain a fourfold bridge, two in the η112 and two in the η212 modes, from two α- and two γ-carboxylates of four different l-Glu residues, respectively.  相似文献   

15.
Six lanthanide coordination polymers La2(1,4-BDOA)2(OX)(H2O) (1), Ln2(1,4-BDOA)2(OX)(H2O) [Ln = La (2); Ln = Pr (3); Ln = Sm (4); Ln = Eu (5); Ln = Tb (6)], [BDOA = benzene-1,4-dioxydiacetate; OX = oxalate] had been prepared under hydrothermal conditions, which were characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. Compounds 1-6 crystallize in a triclinic system, space group ; compounds 1 and 2 are true structural supramolecular isomers based on BDOA ligands constructed from different acid effects; compounds 2-5 are isostructural and exhibit new 3D 12-connected topological networks, which are the same as the topological structure of 6, while 1 shows another 3D 11-connected topological architecture. Furthermore, the luminescent properties of 5 and 6 were studied.  相似文献   

16.
Complexes have been synthesised with bis(2-pyridine carboxaldehyde) ethylenediimine (1) and bis(2-pyridine carboxaldehyde)propylene-1,3-diimine (2) with all of the available lanthanide trinitrates. Crystal structures were obtained for all but one complex with 1 and for all but one complex with 2. Four distinct structural types were established for 1 but only two for 2, although in all cases the structures contained one ligand bound to the metal in a tetradentate fashion. With 1, the four different structures of the lanthanide(III) nitrate complexes included 11-coordinate [Ln(1)(NO3)3(H2O)] for Ln = La; 10 coordinate [Ln(1)(NO3)3(H2O)] with one monodentate and two bidentate nitrates for Ln = Ce, then 10-coordinate [Ln(1)(NO3)3] for Ln = Pr-Yb with three bidentate nitrates; and 9-coordinate [Ln(1)(NO3)3] with one monodentate and two bidentate nitrates for Ln = Lu. On the other hand for 2 only two distinct types of structure are obtained, the first type with Ln = La-Pr and the second type for Ln = Sm-Lu, although all are 10-coordinate with stoichiometry [Ln(2)(NO3)3]. The difference between the two types is in the disposition of the ligand relative to the nitrates. With the larger lanthanides La-Pr the ligand is found on one side of the coordination sphere with the three nitrate anions on the other. In these structures, the ligand is folded such that the angle between the two pyridine rings approaches 90°, while with the smaller lanthanides Sm-Lu, two nitrates are found on one side of the ligand and one nitrate on the other and the ligand is in an extended conformation such that the two pyridine rings are close to being coplanar. In both series of structures, the Ln-N and Ln-O bond lengths were consistent with the lanthanide contraction though there are significant variations between ostensibly equivalent bonds which are indicative of intramolecular hydrogen bonding and steric crowding in the complexes.  相似文献   

17.
A series of coordination polymers constructed by sodium, lanthanide(III), and pyridine-2,6-dicarboxylate (dipic),NaLn(dipic)2 · 7H2O (Ln = Eu, Gd, Tb), have been prepared under a hydrothermal condition. The crystal structures of the three compounds which are isostructual were determined by single-crystal X-ray diffraction. The two-dimensional layers found in the compounds are built up from six-folded {NaO6} polyhedra and nine-folded {LnN2O7} polyhedra, these being edge-shared each other along the c axis and bridged by carboxylate groups of dipic along the b axis, respectively. This two-dimensional framework provides cavities inside the layer and interlayer spaces outside the layer for accommodation of the two dipic molecules coordinated to a lanthanide(III) ions. The dehydrated materials obtained by heating the as-synthesized crystals at 200 °C held their crystal structure, and absorbed the same amounts of water molecules as those of the as-synthesized crystals upon the exposure of 100% relative humidity at room temperature. The Eu and Tb compounds showed strong red and green emissions, respectively, due to an energy transfer from dipic molecules to trivalent emission ions.  相似文献   

18.
Five new supramolecular lanthanide coordination polymers with three different structures, {[La2(IA)3(phen)2] · 2H2O}n (1), {[Ln(IA)1.5(phen)] · xH2O}n [x = 1, Ln = Eu (2); x = 0.25, Ln = Dy (3)], and [Ln(IA)1.5(phen)]n [Ln = Er (4); Yb (5)], were prepared by hydro- and solvothermal reactions of lanthanide chlorides with itaconic acid (H2IA) and 1,10-phenanthroline (phen), and structurally characterized by single crystal X-ray diffraction. 1 Comprises 1-D double-chains that are further assembled to a 3-D supramolecular structure via hydrogen bonds and π-π stacks between phen molecules. 2 and 3 have 2-D infinite networks which are further constructed to form 3-D supramolecular architectures with 1-D channels by π-π aromatic interactions. 4 and 5 have 2-D layer structures consisting of three types of rings which are further architectured to form 3-D supramolecular structures by C-H?O hydrogen bonds. The H2IA ligands are all completely deprotonated and exhibit tetra-, penta-, and hexadentate coordination modes in the titled complexes. The high-resolution emission spectrum of 2 shows only one Eu3+ ion site in 2, which is in agreement with the result of X-ray diffraction. And the magnetic property and the thermal stability of 2 were also investigated.  相似文献   

19.
The mononuclear macrocyclic lanthanide(III) complexes, [Ln(H2L)(H2O)4]Cl3 (Ln = Y, La, Ce, Cu, Tb, Yb, Lu; H2L = H2LA, H2LB, H2LC) were prepared by condensation 3,3′-(3,6-dioxaoctane-1,8-diyldioxy)bis(2-hydroxybenzaldehyde) or 3,3′-(3-oxapentane-1,5-diyldioxy)bis(2-hydroxybenzaldehyde) with 1,5-diamino-3-azamethylpentane or 1,7-diamino-3-azamethylheptane in the presence of LnCl3 · nH2O as templating agent. The asymmetric [1+1] ligands H2LA, H2LB and H2LC contain one smaller or larger N3O2 Schiff base site and one crown-ether like O2O4 or O2O3 site. The preference of the lanthanide ion to reside into the Schiff base or the crown-ether like chamber was investigated in the solid state and in methanol or dimethylsulfoxide solution. It was found that in the solid state or in methanol the lanthanide(III) ion coordinates into the O2On site while in dimethylsulfoxide demetalation and partial metal ion migration from the O2On into the N3O2 chamber occur. The mononuclear lanthanide(III) complexes [Ln(H2L)(H2O)4]Cl3 with the Ln3+ ion in the O2On site have been used as ligands in the synthesis of the heterodinuclear complexes LnLn′(L)(Cl)4 · 4H2O by reaction with the appropriate Ln′(III) chloride in methanol and in the presence of base. The related homodinuclear complexes Ln2(L)(Cl)4 · 4H2O have been prepared by the one-pot condensation of the appropriate precursors in the presence of base and of the lanthanide(III) ion as templating agent.The single-crystal X-ray structure of [Eu(H2LA)(H2O)4]Cl3 · 5H2O has been determined. The europium ion is nine-coordinated in the O2O3 ligand site and bonded to four water molecules and the coordination polyhedron can be described as a square monocapped antiprism.The site occupancy of the different lanthanide(III) ions and the physico-chemical properties arising from the different dinuclear aggregation and/or from the variation of the crown-ether shape have been investigated by IR and NMR spectroscopy, MS spectrometry and SEM-EDS microscopy. In particular, site migration and/or transmetalation reactions, together with demetalation reactions, have been monitored by NMR studies in methanol and dimethylsulfoxide. It was found that these processes strongly depend on the shape of the two coordination chambers, the solvent used and the radius of the lanthanide(III) ions. Thus, these molecular movements can be tuned by changing appropriately these parameters.  相似文献   

20.
Two novel lanthanide(III) two-dimensional (2D) coordination polymers [Ln2(PDC)2(OH)2(H2O)2] · H2O (Ln = Eu (1) and Tb (2), H2PDC = pyridine-3,4-dicarboxylic acid) have been prepared under hydrothermal conditions and characterized by elemental analysis, IR, TGA and single-crystal X-ray diffraction. Compounds 1 and 2 crystallize in the triclinic system, space group , they are isostructural and exhibit the same two-dimensional topological network constructed by PDC-connected Ln-O-Ln double chains. Photoluminescence properties of the compounds 1 and 2 have been investigated in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号