首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the ligands 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo), 1,9-bis(3,5-dimethyl-1-pyrazolyl)-3,7-dithianonane (bddn), and 1,6-bis(3,5-dimethyl-1-pyrazolyl)-2,5-dithiahexane (bddh) with several platinum starting materials as K2PtCl4, PtCl2, [PtCl2(CH3CN)2] and [PtCl2(PhCN)2] was developed under different conditions. The reactions did not yield pure products. The ratio of the NSSN, NS, SS, NN, and 2NS isomers has been calculated through NMR experiments. Treatment of the mixtures of complexes with NaBPh4 affords [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements, IR and 1H and 13C NMR spectroscopy. The X-ray structures of the complexes [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) have also been determined. In these complexes, the metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether sulfur atoms. When the [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) complexes were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1), a mixture of isomers was obtained.  相似文献   

2.
A variety of platinum(II) complexes of methimazole (2-mercapto-1-methylimidazole; HImS = neutral form and ImS = thiolate form), coordinated in both thione and thiolate forms, have been isolated by reacting methimazole with [PtCl(terpy)]Cl (terpy = 2,2′:6′,2″ terpyridine), [PtCl2(bipy)] (bipy = bipyridine), [PtCl2(o-phen)] (o-phen = o-phenanthroline), [PtCl2(CH3CN)2] and [PtCl2(COD)] (COD = 1,5-cyclooctadiene). These complexes were characterized by electronic absorption, IR and NMR (1H, 13C, 195Pt) spectroscopies. Molecular structure of [Pt(bipy)(HImS)2]Cl2·3H2O (3a·3H2O) has been established by single crystal X-ray crystallography. Platinum thiolate complex, [Pt(ImS)2(HImS)2] (5), could be obtained by treatment of [Pt(HImS)4]Cl2 with sodium methoxide in methanol. The solution of 5 in organic solvents yielded bi- and tri-nuclear platinum complexes. The effect of diimine ligands on oxidation of methimazole moiety in the complexes has been studied by electrochemical oxidation and pulse radiolytic oxidation employing specific one-electron oxidant, radical.  相似文献   

3.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

4.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

5.
The reaction of Pt(COD)Cl2, where COD is 1,5-cyclooctadiene, with one equivalent of a diamidato-bis(phosphino) Trost ligand ((R,R)-2 = N,N′-bis(2-diphenylphosphino-1-benzoyl)-(1R,2R)-1,2-diaminocyclohexane, (R,R)-N,N′-bis(2-diphenylphosphino-1-naphthoyl)-(1R,2R)-1,2-diaminocyclohexane, or (±)-N,N′-bis(2-diphenylphosphino-1-benzoyl)-1,2-bis(aminobenzene)) in the presence of base afforded square planar diamidato-bis(phosphino) platinum(II) complexes (R,R)-2-Pt, (R,R)-3-Pt, (±)-4-Pt. Characterization of all complexes included the solution and solid state structure determination of each complex based on multinuclear NMR and X-ray analyses, respectively. Stability of the complexes in acid was examined on addition of HCl to (R,R)-2-Pt in chloroform and compared to the unreactive nature of the similar diamidato-bis(phosphino) complex 1-Pt (= 1,2-bis-N-[2′-(diphenylphosphino)benzoyl]diamino-benzene) in the presence of acid. Protonation of the bound amidato nitrogen atoms of (R,R)-2-Pt was observed along with decoordination of the nitrogen atoms from the platinum(II) center producing (R,R)-2-PtCl2 in quantitative yield by NMR analysis. Confirmation of the product was made on comparison of the NMR spectra to that of authentic (R,R)-2-PtCl2 prepared on reaction of Pt(COD)Cl2 with (R,R)-2 in CH2Cl2 and characterized by single-crystal X-ray diffraction analysis and NMR spectroscopy. Results add to the knowledge of rich coordination chemistry of bis(phosphino) ligands with late transition metals, metal-amidato chemistry, and has implications in catalysis.  相似文献   

6.
The thiocarbamate esters 4-RC6H4NHC(S)OMe (R = H, Cl, OMe, NO2, Me) react with cis-[PtCl2(PTA)2] (PTA = 1,3,5-triaza-7-phosphaadamantane) in the presence of base to afford the platinum(II) complexes trans-[Pt{SC(OMe)NC6H4R}2(PTA)2] (R = H, Cl, OMe, NO2, Me) in high yields. The complexes were fully characterised spectroscopically and, in case of the NO2 derivate, by X-ray crystallography. Cytotoxicity of these complexes was studied in vitro in four human cancer cell lines (CH1, HT29, A549, SK-OV-3) using the MTT assay. The results show that the Cl substituted derivate is the most potent of these compounds in vitro. Moreover, this derivative is capable of partially circumventing primary cisplatin resistance in ovarian and colon carcinoma cells.  相似文献   

7.
Complexes of the types cis-Pt(amine)2I2 were transformed into the iodo-bridged dimers, which were characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. For bulby amines, the dinuclear species were synthesized directly from K2[PtI4]. Compounds with several primary aliphatic and cyclic amines and two secondary amines were studied. In 195Pt NMR, two signals were observed between −3899 and −4080 ppm in acetone. These species were assigned to the cis and trans dinuclear compounds I(amine)Pt(μ-I)2PtI(amine). We suggest that the most shielded compound is the trans isomer. The difference between the two isomers is 12-13 ppm for the primary amine system and 26-27 ppm for the two secondary amines. There seems to be a slight dependence of the proton affinity in the gas phase of the amine (linear amines) with the δ(Pt) chemical shifts of the dinuclear Pt(II) compounds. The 2J(195Pt-1HN) coupling constants are slightly larger for the trans isomers (average 67 Hz, vs. 56 Hz). The 3J(195Pt-1H) coupling constants were detected only for the dimethylamine compounds, 46 Hz (trans) and 44 Hz (cis). In 13C NMR, the values of 2J(195Pt-13C) and 3J(195Pt-13C) were also found to be very slightly larger for the trans complexes (average 19 and 25 Hz vs. 15 and 18 Hz). The structures were confirmed by X-ray diffraction studies of the n-butylamine and diethylamine compounds. The two crystals were those of the trans dinuclear complexes.  相似文献   

8.
A new series of square planar palladium(II) complexes with pincer ligands, pip2NCN (pip2NCNH = 1,3-bis(piperidylmethyl)benzene) and pip2NNN (2,6-bis(piperidylmethyl)pyridine), has been prepared: Pd(pip2NCN)X (X = Cl, Br, I), [Pd(pip2NCN)(L)](BF4) (L = pyridine, 4-phenylpyridine), and [Pd(pip2NNN)Cl]Cl. The X-ray crystal structures of Pd(pip2NCN)Br, [Pd(pip2NCN)(L)]BF4, and [Pd(pip2NNN)Cl]Cl confirm the tridentate coordination geometries of the pincer ligands. For the pip2NCN complexes, each piperidyl ring adopts a chair conformation with the metal center at an equatorial position on the N(piperidyl) atom. However, one of the piperidyl groups of Pd(pip2NNN)Cl+ adopts a previously unobserved coordination geometry, effectively placing the metal center at an axial position on the N(piperidyl) atom. 1H NMR and UV-Vis absorption measurements provide additional insight into the electronic structures of these complexes. The 1H NMR spectra of Pd(pip2NCN)X (X = Cl, Br, I) are consistent with deshielding of the pip2NCN ligand resonances along the Cl < Br < I series, in opposition to the relative halogen electronegativities. It is suggested that this trend is consistent with decreasing filled/filled repulsions between the dπ orbitals of the metal center and the lone pair orbitals of the halide ligands along this series. Electronic absorption spectra support the notion that ligand-to-metal charge-transfer states are stabilized in these palladium(II) complexes relative to their platinum(II) analogues.  相似文献   

9.
The complexes Pt(pq)Cl2(1) and Pt(pq)(bdt) (2) (where pq = 2-(2'pyridyl)quinoxaline and bdt=benzene-1,2-dithiolate) have been synthesized and fully characterized by UV-visible (UV-Vis), Fourier Transformer Infrared Spectra (FTIR), 1 and 2D NMR and cyclic voltammetry (CV). Interactions of the tested systems (the aforementioned complexes 1 and 2) and the free ligands pq and bdt with double stranded calf thymus DNA (CT-DNA) were studied by UV-spectrophotometric (melting curves) and circular dichroism (CD) measurements. The results suggest that both complexes 1 and 2, are able to form adducts with DNA and to distort the double helix by changing the base stacking. Complex 2 forms stronger adducts to CT-DNA than complex 1 and this is probably due to the substitution of the chlorine atoms of 1 by the 1,2-dithiolate ligand (bdt) in 2. The latter induces an extensive distortion in the planarity of 2 as density functional theory (DFT) calculations reveal. Besides, the light absorbing complex 2 possess intense mixed metal ligand to ligand charge transfer (MM'LLCT) transition in the visible region of the spectrum and could act as photoluminescent metal-based probe for the study of DNA binding. Thus, the photocleavage of DNA by 2 has been studied by UV-Vis and CD spectra and monitored by agarose gel electrophoresis. Under our experimental conditions, it is unclear that complex 2 can photocleave DNA. Furthermore, the ability of 2 to inhibit proliferation of human tumor cell lines was tested and the results indicate some cytoxytic effect on the SF-286 cells.  相似文献   

10.
The reactivity of [PtCl(η2-CH2CHR)(tmeda)]+ (R = H, 1a, or Me, 1b; tmeda = N,N,N,N′-tetramethyl-1,2-diaminoethane) towards some ambident nucleophiles like anilines and phenolate anion has been tested. The reaction of 1a with N-methylaniline gives immediately N-addition to the coordinated ethene (3a), but, in the presence of an inorganic carbonate, a partial rearrangement, with the para carbon of the phenyl ring taking the place of nitrogen, is observed (4a and 5a). Reaction with a tertiary aromatic amine, such as N,N-dimethylaniline, leads exclusively to the C-coupled species. The phenolate anion acts initially as an oxygen donor, however the resulting species (6a), in contact with free phenol, rearranges to C-bonded species (7a). For free phenol/6a ratios ? 5 the rearranged product has an isomeric ortho/para ratio of ≈3. For lower free phenol/6a ratios (? 1) oligomeric complexes, in which two or three platinum ethanide moieties are bound to the same phenol ring, are also formed. In the case of 1b, the above described reactivity has to compete with the base-induced deprotonation of propene, leading to formation of the allyl-bridged platinum dimer [{PtCl(tmeda)}(μ-η13-CHCHCH2){Pt(tmeda)}]+. The X-ray crystal structure of 1b has also been determined; the structural parameters are very similar to those previously reported for 1a. DFT calculations have shown a similar activation of the two complexes towards nucleophilic addition at the coordinated olefin, although in 1b the electrophilic character of the olefin is masked by the Brønsted acidity of the propene methyl protons.  相似文献   

11.
Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.  相似文献   

12.
Two unique bimetalic Pt(II) coordination polymers of composition [Ni(hydeten)2Pt(CN)4] (Ni-Pt) and [Cu(hydeten)2Pt(CN)4] (Cu-Pt) [hydeten = N-(2-hydroxyethyl-ethylenediamine) or 2-(2-aminoethylamino)ethanol] have been synthesized and structurally characterized by various methods in this study. The crystal structure of Cu-Pt was determined by single-crystal X-ray diffraction analysis. The structure of Cu-Pt forms of infinite 2,2-TT type [-Cu(hydeten)2-NC-Pt(CN)2-CN-] chains containing paramagnetic copper atoms bridged by tetracyanoplatinate species. In this complex, Cu(II) centers display an axially elongated octahedron with two chelating hydeten molecules in the equatorial positions and N-bonded bridging cyano groups in the axial positions, whereas Pt(II) centers are four coordinate with four cyanide-carbon atoms in a square-planar arrangement. The decrease of the moments of these complexes in temperature range of 50 305 K can assigned to the antiferromagnetic interactions in the structures. The thermal decomposition of Cu-Pt comprise of five distinguished stages, while the thermal decomposition of Ni-Pt take place four different stages.  相似文献   

13.
Reaction of platinum(II) salts with 5-ferrocenylpyrimidine (FcPM) afforded cis-[Pt(NH3)2(FcPM)2](PF6)2 (1), trans-[Pt(NH3)2(FcPM)2](PF6)2 (2), cis-[PtCl2(FcPM)2] (3), and cis-[PtCl2(DMSO)(FcPM)] (4): their spectroscopic and electrochemical properties were investigated. Complexes 1 and 2 were structurally characterized by X-ray crystallography.  相似文献   

14.
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively.  相似文献   

15.
Interaction of cadmium(II) or zinc(II) acetate with 1,2-bis(4-pyridyl)ethane (bpe) in the presence of dioxime(1,2-cyclohexanedionedioxime = NioxH2 or diphenylglyoxime = dpgH2) resulted in three complexes with the compositions [Cd2(CH3COO)4(NioxH2)2(bpe)(H2O)2] (1), [Cd(CH3COO)2(bpe)(H2O)]n (2) and [Zn(CH3COO)2(NioxH2)(bpe)(H2O)]n (3), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, and luminescence spectroscopy. Dioxime-containing binuclear molecule 1 and 1D linear polymer 3 possess moderate luminescence properties, while the dioxime-free 1D polymer 2 demonstrates strong blue luminescence.  相似文献   

16.
Treatment of MCl2(PP) or MCl2(PnPr3)2 with two equivalents of ArCOSeK readily yields cis-[M(SeCOAr)2(PP)] and trans-[M(SeCOAr)2(PnPr3)2], respectively (M = Pd or Pt; Ar = Ph or 4-MeC6H4; PP = dppm, dppe, dppp). The reaction of Pd(SeCOAr)2(dppe) with PdCl2(dppe) in the presence of NaBPh4 in methanol gave a tri-nuclear ionic complex, [Pd33-Se)2(dppe)3][BPh4]2. These complexes were characterized by UV-Vis, IR and NMR spectroscopy. The complex [Pt(SeCOPh)2(dppp)] has been structurally characterized by X-ray crystallography. The coordination environment around square planar platinum atom is defined by chelating dppp ligand and two unidentate selenocarboxylates bonded through selenium atoms. Pyrolysis of [Pd(SeCOAr)2(PnPr3)2] either in tri-n-butylphosphate (TBP) (at 200 °C) or in the solid state (furnace heating at 350 °C) gave Pd17Se15.  相似文献   

17.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

18.
The substitution behaviour of [PtCl(R)(COD)] (R = Me and Fc) complexes, by the stepwise addition of phosphine ligands, L (L = PPh3, PEt3 and P(NMe2)3), were investigated in situ by 1H and 31P NMR spectroscopy. Addition of less than two equivalents of the phosphine ligand results in the formation of dimeric molecules with the general formula trans-[Pt(R)(μ-Cl)(L)]2 for the sterically demanding systems where R = Me/L = P(NMe2)3 and R = Fc/L = PEt3, PPh3 and P(NMe2)3 while larger quantities resulted in cis- and trans mixtures of mononuclear complexes being formed. In the case of the relatively small steric demanding, strongly coordinating, PEt3 ligand the trans-[PtCl(R)(PEt3)2] mononuclear complexes were exclusively observed in both cases. The crystal structures of the two substrates, [PtCl(R)(COD)] (R = Me or Fc), as well as the cis-[PtCl(Fc)(PPh3)2] substitution product are reported.  相似文献   

19.
The dihydrobis(3-carboxyethyl-5-methylpyrazolyl)borate ligand, BpCOOET,Me, reacts with divalent metals to yield complexes of general type [(BpCOOET,Me)2M], where M = Mn(II), Fe(II), Co(II), Ni(II), Zn(II), Cu(II), Pb(II) and Cd(II). All complexes have been fully characterized by elemental analyses and FT-IR in the solid state and by NMR (1H and 113Cd NMR) spectroscopy and electrospray ionization mass spectrometry in solution. A single crystal structural characterization is reported for [Cu(BpCOOET,Me)2] and [Zn(BpCOOET,Me)2]. In the two complexes, both metals are four-coordinated and they are only bound to the nitrogen atoms of the bis(pyrazolyl)borate ligand; however, while the environment of the copper atom is square planar, that of the zinc center shows a tetrahedral distorted conformation.  相似文献   

20.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号