首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [Ru(2,2′-bipyridine)(2,2′:6′,2″-terpyridine)Cl]PF6 (abbreviated to [Ru(bipy)(terpy)Cl]PF6) with 0.5 equiv of the bidentate ligand L produces the dinuclear complexes [{Ru(bipy)(terpy)}2(μ-L)](PF6)4 (L = 4,4′-bipyridine 1, 1,4-diisocyanobenzene 2 and pyrazine 3) in moderate yields. Treating [Ru(bipy)(terpy)Cl]PF6 with equal molar of 1,4-diisocyanobenzene affords [Ru(bipy)(terpy)(CNC6H4NC)](PF6)2 (2a). These new complexes have been characterized by mass, NMR, and UV-Vis spectroscopy, and the structures of 1-3 determined by an X-ray diffraction study. Cyclic voltammetric studies suggest that metal communication between the two ruthenium ions increases from 1 to 2 to 3.  相似文献   

2.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

3.
Copper(II) coordination complexes of the neutral ligand, tris(3-tert-butyl-5-methyl-1-pyrazolyl)methane (L2′), i.e. the copper(II) nitrato complexes [Cu(L2′)(NO3)][Cu(NO3)4]1/2 (1) and [Cu(L2′)(NO3)](ClO4) (2) and the copper(II) chloro complex [Cu(L2′)(Cl)](ClO4) (3), and its anionic borate analogue, hydrotris(3-tert-butyl-5-methyl-1-pyrazolyl)borate (L2), i.e. the copper(II) nitrato complex [Cu(L2)(NO3)] (4) and the copper(II) chloro complex [Cu(L2)(Cl)] (5), were synthesized in order to investigate the influence of ligand framework and charge on their structure and physicochemical properties. While X-ray crystallography did not show any definitive trends in terms of copper(II) atom geometry in four-coordinate copper(II) chloro complexes 3 and 5, different structural trends were observed in five-coordinate copper(II) nitrato complexes 1, 2, and 4. These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, ESR, IR/far-IR, and X-ray absorption spectroscopy.  相似文献   

4.
A series of Ru(II) polypyridyl complexes [Ru(bpy)2(ptdb)](ClO4)2 (1), [Ru(bpy)2(ptda)](ClO4)2 (2) and [Ru(bpy)2(ptdp)](ClO4)2 (3) with asymmetric intercalative ligands have been synthesized and characterized by EA, mass spectra, 1H NMR and cyclic voltammetry. The crystal structure of complex 1 has been determined. The DNA-binding properties of the complexes were investigated by absorption titration, luminescence spectroscopy and viscosity measurements. The experimental results suggest that all these complexes bind to DNA in an intercalation mode. The results also show that the order of DNA-binding affinities (A) of this series of complexes is A(1) < A(2) < A(3). It is further confirmed that a ligand planarity of the complexes is a very important factor in affecting the DNA-binding behaviors of such complexes. Theoretical studies for these complexes were also carried out with the density functional theory (DFT) method. The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the synthetical considerations of the calculated planarity of intercalative ligands, some frontier molecular orbital energies of the complexes and the planarity area (S) of the intercalative ligands.  相似文献   

5.
A series of ruthenium (II) complexes of formulae trans-[Ru(PPh3)2(L′H)2](ClO4)2 (1), [Ru(bpy)(L′H)2](ClO4)2 (2), [Ru(bpy)2(L′H)](ClO4)2 (3), cis-[Ru(DMSO)2(L′H)2]Cl2 (4), and [Ru(L′H)3](PF6)2 (5) (where L′H = 2-(2′-benzimidazolyl)pyridine) have been synthesized by reaction of the appropriate ruthenium precursor with 1,2-bis(2′-pyridylmethyleneimino)benzene (L). The complexes were characterized by elemental analyses, spectroscopic and electrochemical data. All the complexes were found to be diamagnetic and hence metal is in +2 oxidation state. The molecular structure of trans-[Ru(PPh3)2(L′H)2](ClO4)2 has been determined by the single crystal X-ray diffraction studies. The molecular structure shows that Ru(II) is at the center of inversion of an octahedron with N4P2 coordination sphere. The ligand acts as a bidentate N,N′donor. The electronic spectra of the complexes display intense MLCT bands in the visible region.Cyclic voltammetric studies show quasi-reversible oxidative response at 0.99-1.32 V (vs Ag/AgCl reference electrode) due to Ru(III)/Ru(II) couple.  相似文献   

6.
Reaction of [Mn(2,2′-bpy)2(OAc)](ClO4)(H2O) with a series of aromatic carboxylic acids yields new Mn(II)carboxylates [Mn(2,2′-bpy)2(L)](ClO4)}2 (1-3), [Mn(2,2′-bpy)2(L)2] (4-5) and [Mn(2,2′-bpy)2(L)(H2O)](ClO4) (6) (L = 2-aminobenzoate (2-aba) (1), 4-hydroxybenzoate (4-hba) (2), thiophene-2-carboxylate (2-tca) (3), 2-hydroxynapthoate (2-hnapa) (4), 3,5-diisopropylsalicylic acid (dipsa) (5), 2,4,6-triisopropylbenzoate (tipba) (6)). The new compounds have been characterized with the aid of elemental analysis, spectroscopy, and single-crystal X-ray diffraction studies. Compounds 1-3, which have been synthesized from less bulky carboxylic acids, are dimeric in the solid-state. Compounds 4-6, which are derived from more bulkier aromaric carboxylic acids, exist as monomeric complexes. In the case of 6, where very bulky 2,4,6-triisopropyl benzoic acid is used as the starting material, only one carboxylate ligand binds to the metal, resulting in a cationic complex. Interestingly in all the six complexes, the C-H hydrogen atoms of the 2,2′-bpy ligands are involved in extensive hydrogen bonding with the carboxylate oxygen atoms of the adjacent molecules and hence form non-covalent 1-D or 2-D aggregates in the solid state.  相似文献   

7.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

8.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

9.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

10.
Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)21 and [Ru(bpy)2(nitatp)](ClO4)22 (bpy = 2,2′-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process.  相似文献   

11.
We report here the synthesis, characterisation, electrochemical, photophysical and protein-binding properties of four luminescent ruthenium(II) polypyridine indole complexes [Ru(bpy)2(L1)](PF6)2 (1), [Ru(bpy)2(L2)](PF6)2 (2), [Ru(L1)3](PF6)2 (1a), and [Ru(L2)3](PF6)2 (2a) (bpy = 2,2′-bipyridine; L1 = 4-(N-(2-indol-3-ylethyl)amido)-4′-methyl-2,2′-bipyridine; L2 = 4-(N-(6-N-(2-indol-3-ylethyl)hexanamidyl)amido)-4′-methyl-2,2′-bipyridine). Their indole-free counterparts, [Ru(bpy)2(L3)](PF6)2 (3) and [Ru(L3)3](PF6)2 (3a) (L3 = 4-(N-(ethyl)amido)-4′-methyl-2,2′-bipyridine), have also been synthesised for comparison purposes. Cyclic voltammetric studies revealed ruthenium-based oxidation at ca. +1.3 V versus SCE and diimine-based reductions at ca. −1.20 to −2.28 V. The indole moieties of complexes 1, 2, 1a and 2a displayed an irreversible wave at ca. +1.1 V versus SCE. All the ruthenium(II) complexes exhibited intense and long-lived orange-red triplet metal-to-ligand charge-transfer 3MLCT (dπ(Ru) → π*(L1-L3)) luminescence upon visible-light irradiation in fluid solutions at 298 K and in alcohol glass at 77 K. The binding of the indole-containing complexes to bovine serum album (BSA) has been studied by quenching experiments and emission titrations.  相似文献   

12.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

13.
Reaction of 4,4′-di(3-pyridyl-4-pyrimidinyl) disulfide (3-PPDS) with AgNO3 leads to a unique 2D extended structure {[Ag(3-PPDS)(NO3)]}n (1) based on [Ag2(3-PPDS)2] macrocycle units, of which 1D inorganic [Ag(NO3)]n helical chains are generated. By contrast, definite Ag-S bonding interactions associated with the disulfide function have been established in {[Ag(2-PPDS)]ClO4}n (2), which is assembled of 4,4′-di(2-pyridyl-4-pyrimidinyl) disulfide (2-PPDS) with AgClO4. Solid state luminescent properties of complexes 1 and 2 are also examined.  相似文献   

14.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

15.
Two new linear and V-shaped tetradentate ligands, namely 1,4-bis(2-hexahydropyrimidyl)benzene (L) and 1,3-bis(2-hexahydropyrimidyl)benzene (L), and their silver(I) complexes, [Ag2L(μ-ONO2)](NO3) · 2H2O (1), [Ag2L(μ-pn)](NO3)2 (2), [Ag2L(μ-pn)](ClO4)2 (3) and [Ag4L2(H2O)](NO3)4 · 5H2O (4) (pn=1,3-diaminopropane) have been synthesized in situ and structurally characterized by single-crystal X-ray diffraction. 1 and 2 were obtained from the same reaction solution but different crystallization conditions. 1 is an one-dimensional chain featuring cuboid tetranuclear silver(I) units interconnected through monoatomic nitrate bridges. Both 2 and 3 are ribbon-like helical compounds in which each L ligand acts in a tetradentate bridging mode to interconnect four metal atoms, and each pn ligand functions in a bidentate bridging mode to link a pair of metal atoms. 4 shows a truncated square-pyramidal tetranuclear motif arose by the V-shaped L ligand. Close Ag?Ag separations (2.901-2.939 Å) assisted by bis(hexahydropyrimidine) bridges were observed in 1 and 4, indicating metal-metal interactions. Photoluminescence of 1-4 has also been observed in the solid state and solution at room temperature and low temperature, respectively.  相似文献   

16.
Four cobalt(III) complexes containing the polypyridine pentadentate ligands N,N-bis(2-pyridylmethyl)amine-N′-ethyl-2-pyridine-2-carboxamide (PaPy3H), N,N-bis(2-pyridylmethyl)amine-N′-[1-(2-pyridylethyl)acetamide (MePcPy3H), and N,N-bis(2-pyridylmethyl)amine-N′-(2-pyridylmethyl)acetamide (PcPy3H), have been synthesized. All three ligands bind the Co(III) center in the same fashion with the exception of loss of conjugation between the carboxamide moiety and the pyridine ring in the latter two. The structures of [(PaPy3)Co(OH)][(PaPy3)Co(H2O)](ClO4)3 · 3H2O (1), [(PaPy3)Co(NO2)](ClO4) · 2MeCN (2), [(MePcPy3)Co(MeCN)](ClO4)2 · 0.5MeCN (3), and [(PcPy3)Co(Cl)](ClO4) · 2MeCN (4) have been determined. These ligands with strong-field carboxamido N donor stabilize the +3 oxidation state of the Co center as demonstrated by the facile oxidation of the corresponding Co(II) complexes (prepared in situ) by H2O2, [Fe(Cp)2](BF4), or nitric oxide (NO). The Co-Namido bond distances of 1-4 lie in the narrow range of 1.853-1.898 Å. 1H NMR spectra of these complexes confirm the low-spin d6 ground states of the metal centers.  相似文献   

17.
An investigation of the reaction of Pd(II) complexes with proflavine (3,6-diaminoacridine) resulted in the isolation of the compounds [Pd(terpy)(proflavine)](NO3)(HSO4)3H2O, 1, (terpy = 2,2′:6′,2″-terpyridine), [Pd(en)(proflavineH))](NO3)(SO4), 2, (en = ethylenediamine), and [Pd(proflavineH)Cl2](SO4)0.5H2O, 3. They have been isolated and characterized by NMR, IR, and electro-spray ionization mass spectrometry techniques and by elemental analyses. The proflavine was bonded to the Pd(II) through the endocyclic nitrogen in 1, but through the proflavine NH2 in 2. Compound 3 appeared to be polymeric in the solid state with a 1:1 mole ratio of Pd(II):proflavine. Upon solution of 3 in DMSO, two unique species were formed. In one species the Pd(II) was bonded to two proflavines through the endocyclic nitrogen (1:2 mole ratio) and in the other species, a Pd(II) was bonded to each NH2 group of a single proflavine (2:1 mole ratio). Molecular modeling of the equilibrium geometry by Spartan 8 produced structures which were consistent with the experimental data on the solutions of the three compounds. In vitro cytotoxicity testing against two breast cancer cell lines and one ovarian cancer cell line showed that compounds 1 and 3 had significant activity.  相似文献   

18.
[Ru(2,2′-bipyridine)2(Hdpa)](BF4)2 · 2H2O (1), [Ru(1,10-phenanthroline)2(Hdpa)] (PF6)2 · CH2Cl2 (2) and [Ru(4,4,4′,4′-tetramethyl-2,2′- bisoxazoline)2(Hdpa)] (PF6)2 (3) are synthesized where Hdpa is 2,2′-dipyridylamine. The X-ray crystal structures of 1 and 2 have been determined. Hdpa in 1 and 2 is found to bind the metal via the two pyridyl N ends. Comparing the NMR spectra in DMSO-d6, it is concluded that 3 has a similar structure. The pKa values (for the dissociation of the NH proton in Hdpa) of free Hdpa and its complexes are determined in acetonitrile by exploiting molar conductance. These correlate linearly with the chemical shift of the NH proton in the respective entities.  相似文献   

19.
A new potentially tetradentate (N4) Schiff base ligand (L), 1,9,12,20-tetraazatetracyclo[18.2.2.02,7.014,19]tetracosa-2(7),3,5,8,12,14(19),15,17-octaene containing a piperazine moiety is described. Macrocyclic Schiff base complexes, [NiL](ClO4)2 (1) and [CuL](ClO4)2 (2) have been obtained from equimolar amounts of ligand (L) with nickel(II) and copper(II) metal ions. While the equilibrium reaction in the presence of cobalt(II) and zinc(II) metal ions with ligand L in a 1:1 molar ratio yielded the open-chain Schiff base complexes, [CoL′](ClO4)2 (3) and [ZnL′](ClO4)2 (4) containing two terminal primary amino groups. The ligand L′ is 1,4-bis(2-(2-aminoethyliminomethyl)phenyl)piperazine. The crystal structures of (1) and (4) have been also determined by X-ray diffraction. It was shown that the Ni(II) is coordinated to the ligand L by two nitrogen atoms of piperazine group and two nitrogen atoms of the imine groups, in a slightly distorted square-planar geometry. Also single crystal X-ray analysis of (4) confirmed a distorted octahedral arrangement in the vicinity of Zn atom with N6 donor set. The spectroscopic characterization of all complexes is consistent with their crystal structures.  相似文献   

20.
The new complex, [RuII(bpy)2(4-HCOO-4′-pyCH2 NHCO-bpy)](PF6)2 · 3H2O (1), where 4-HCOO-4′-pyCH2NHCO-bpy is 4-(carboxylic acid)-4′-pyrid-2-ylmethylamido-2,2′-bipyridine, has been synthesised from [Ru(bpy)2(H2dcbpy)](PF6)2 (H2dcbpy is 4,4′-(dicarboxylic acid)-2,2′-bipyridine) and characterised by elemental analysis and spectroscopic methods. An X-ray crystal structure determination of the trihydrate of the [Ru(bpy)2(H2dcbpy)](PF6)2 precursor is reported, since it represented a different solvate to an existing structure. The structure shows a distorted octahedral arrangement of the ligands around the ruthenium(II) centre and is consistent with the carboxyl groups being protonated. A comparative study of the electrochemical and photophysical properties of [RuII(bpy)2(4-HCOO-4′-pyCH2NHCO-bpy)]2+ (1), [Ru(bpy)2(H2dcbpy)]2+ (2), [Ru(bpy)3]2+ (3), [Ru(bpy)2Cl2] (4) and [Ru(bpy)2Cl2]+ (5) was then undertaken to determine their variation upon changing the ligands occupying two of the six ruthenium(II) coordination sites. The ruthenium(II) complexes exhibit intense ligand centred (LC) transition bands in the UV region, and broad MLCT bands in the visible region. The ruthenium(III) complex, 5, displayed overlapping LC bands in the UV region and a LMCT band in the visible. 1, 2 and 3 were found, via cyclic voltammetry at a glassy carbon electrode, to exhibit very positive reversible formal potentials of 996, 992 and 893 mV (versus Fc/Fc+) respectively for the Ru(III)/Ru(II) half-cell reaction. As expected the reversible potential derived from oxidation of 4 (−77 mV (versus Fc/Fc+)) was in excellent agreement with that found via reduction of 5 (−84 mV (versus Fc/Fc+)). Spectroelectrochemical experiments in an optically transparent thin-layer electrochemical cell configuration allowed UV-Vis spectra of the Ru(III) redox state to be obtained for 1, 2, 3 and 4 and also confirmed that 5 was the product of oxidative bulk electrolysis of 4. These spectrochemical measurements also confirmed that the oxidation of all Ru(II) complexes and reduction of the corresponding Ru(III) complex are fully reversible in both the chemical and electrochemical senses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号