首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium(II) solutions, prepared by dissolving titanium metal in triflic acid+HF, react readily with chelated complexes of Ag(III), nickel(IV) and copper(III). Reactions with excess Ti(II) yield Ti(III) and are strongly catalyzed by added Ti(IV), but stoichiometry is unaffected. Rapid reactions of Ti(II) with nonchelated oxidants, VO2+, and do not exhibit catalysis by Ti(IV). Reductions by Ti(III) are unaffected by Ti(IV). The Ag(III)-Ti(II) reaction, as catalyzed by Ti(IV), is subject to kinetic saturation with an association quotient 4 × 102 M−1 for the Ti(IV)-activated species. It is proposed that the catalyzed reductions of the Ag(III) and Ni(IV) oxidants are initiated by 1e steps, but that the initially formed cation pairs undergo geminate follow-up reactions to give the observed stable products.  相似文献   

2.
Some novel ternary and quaternary complexes of titanium(IV) of general formula [Ti(acac)Cl3−n(OOCR)n] (R = C15H31 or C17H35 and n = 1-3) have been synthesized by stepwise substitution of chloride ions of [Ti(acac)Cl3] by straight chain carboxylic acid anions. The complexes are characterized by their elemental analyses, spectral (infrared, FAB mass, 1H NMR and powder XRD) studies, molecular weight determination and molar conductance measurements. Infrared spectra suggested bidentate chelating nature of both acetylacetonate and carboxylate anions in the complexes. Monomeric nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. Molar conductance values indicated the complexes to be non-electrolytes in DMF. The complexes exhibited high resistance to hydrolysis. Their powder XRD data indicated the nano-size for the complexes. The coordination number of titanium(IV) in these complexes were found to be six, seven and eight which has been discussed in detail.  相似文献   

3.
Transferrin, the human iron transport protein, binds Ti(IV) even more tightly than it binds Fe(III). However, the fate of titanium bound to transferrin is not well understood. Here we present results which address the fate of titanium once bound to transferrin. We have determined the redox potentials for a series of Ti(IV) complexes and have used these data to develop a linear free energy relationship (LFER) correlating Ti(IV) ? Ti(III) redox processes with Fe(III) ? Fe(II) redox processes. This LFER enables us to compare the redox potentials of Fe(III) complexes and Ti(IV) complexes that mimic the active site of transferrin and allows us to predict the redox potential of titanium-transferrin. Using cyclic voltammetry and discontinuous metalloprotein spectroelectrochemistry (dSEC) in conjunction with the LFER, we report that the redox potential of titanium-transferrin is lower than − 600 mV (lower than that of iron-transferrin) and is predicted to be ca. − 900 mV vs. NHE (normal hydrogen electrode). We conclude that Ti(IV)/Ti(III) reduction in titanium-transferrin is not accessible by biological reducing agents. This observation is discussed in the context of current hypotheses concerning the role of reduction in transferrin mediated iron transport.  相似文献   

4.
Recently, a series of Fe(II) complexes have been published by our group with 3 N-donor 1,3-bis(2′-Ar-imino)isoindoline ligands containing various Ar-groups (pyridyl, 4-methylpyridyl, thiazolyl, benzimidazolyl and N-methylbenzimidazolyl). The superoxide scavenging activity of the compounds showed correlation with the Fe(III)/Fe(II) redox potentials. Analogous, electroneutral chelate complexes with Mn(II) and Ni(II) in 2:1 ligand:metal composition are reported here. Each Mn(II) complex exhibits one reversible redox wave that is assigned as the Mn(III)/Mn(II) redox transition. The E1/2 spans a 180 mV range from − 98 (Ar = 3-methylpyridyl) to 82 mV (Ar = thiazolyl) vs. the Fc+/Fc depending on the Ar-sidearm. The SOD-like (SOD=superoxide dismutase)activity of all complexes was determined according to the McCord-Fridovich method. The Mn(II) isoindolinates have IC50 values - determined with 50 μM cytochrome c Fe(III) - that range from (3.22 ± 0.39) × 10− 6 (Ar = benzimidazolyl) to (10.80 ± 0.54) × 10− 6 M (Ar = N-methylbenzimidazolyl). In contrast with the Fe(II) complexes, the IC50 concentrations show no significant dependence on the E1/2 values in this narrow potential range emphasizing that the redox potential is not the governing factor in the Mn(II)-containing scavengers. The analogous Ni(II) compounds show no redox transitions in the thermodynamically relevant potential range (− 0.40 to 0.65 V vs. SCE) and accordingly, their superoxide scavenging activity (if any) is below the detection level.  相似文献   

5.
The reactions of [Ru(PPh3)3Cl2], N-(benzoyl)-N′-(5-R-salicylidene)hydrazines (H2bhsR, R = H, OCH3, Cl, Br and NO2) and triethylamine (1:1:2 mole ratio) in methanol afford mononuclear ruthenium(III) complexes having the general formula trans-[Ru(bhsR)(PPh3)2Cl]. In the case of R = H, a dinuclear ruthenium(III) complex of formula [Ru2(μ-OCH3)2(bhsH)2(PPh3)2] has been isolated as a minor product. The complexes are characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. The crystal structures of the dinuclear complex and two mononuclear complexes have been determined. In the dinuclear complex, each metal centre is in distorted octahedral NO4P coordination sphere constituted by the two bridging methoxide groups, one PPh3 molecule and the meridionally spanning phenolate-O, imine-N and amide-O donor bhsH2−. The terminal PPh3 ligands are trans to each other. In the mononuclear complexes, bhsR2− and the chlorine atom form an NO2Cl square-plane around the metal centre and the P-atoms of the two PPh3 molecules occupy the remaining two axial sites to complete a distorted octahedral NO2ClP2 coordination sphere. All the complexes display ligand-to-metal charge transfer bands in the visible region of the electronic spectra. The cryomagnetic measurements reveal the antiferromagnetic character of the diruthenium(III) complex. The low-spin mononuclear ruthenium(III) complexes as well as the diruthenium(III) complex display rhombic EPR spectra in frozen solutions. All the complexes are redox active in CH2Cl2 solutions. Two successive metal centred oxidations at 0.69 and 1.20 V (versus Ag/AgCl) are observed for the dinuclear complex. The mononuclear complexes display a metal centred reduction in the potential range −0.53 to −0.27 V. The trend in these potential values reflects the polar effect of the substituents on the salicylidene moiety of the tridentate ligand.  相似文献   

6.
Two mononuclear mixed-ligand ruthenium(III) complexes with oxalate dianion (ox2−) and acetylacetonate ion (2,4-pentanedionate, acac), K2[Ru(ox)2(acac)] (1) and K[Ru(ox)(acac)2] (2), were prepared as a candidate for a building block. In fact, reaction of complex 2 with manganese(II) sulfate gave a heterometallic tetranuclear complex, TBA[MnII{(μ-ox)RuIII(acac)2}3] (5) in the presence of tetrabutylammonium (TBA) bromide. The 1H NMR, UV-Vis, selected IR and FAB mass spectral data of these complexes are presented. Both mixed-ligand ruthenium(III) complexes gave a Nernstian one-electron reduction step in 0.1 mol dm−3 Na2SO4 aqueous solution on a mercury electrode at 25 °C. Comparison of observed reversible half-wave potentials with calculated values for a series of [Ru(ox)n(acac)3 − n]n (n=0-3) complexes by using Lever’s ligand electrochemical parameters is presented.  相似文献   

7.
Potentiometric titrations of N,N-bis(2-hydroxyethyl)glycine (bicine) in the presence of Ln(III) cations (Ln=La, Pr, Nd and Eu) in the pH range extended to ca. 9.5 reveal formation of two types of binuclear hydroxo complexes Ln2(bic)2(OH)4 and Ln2(bic)(OH)4 + (bicH=bicine) in addition to previously reported mononuclear mono- and bis-complexes Ln(bic)2+ and Ln(bic)2 +, which predominate at pH below 8. 1H NMR titrations of La(III)-bicine mixtures in D2O show that the complex formation with bicine is slow in the NMR time scale and confirm formation of hydroxide rather than alkoxide complexes in basic solutions. Formation of a different type of hydroxide species under conditions of an excess of metal over ligand is confirmed by studying the absorption spectra of the Nd(III)-bicine system in the hypersensitive region. The binuclear hydroxide complexes are predominant species at pH above 9 and their stabilities increase in the order La < Pr ≈ Nd < Eu. They show fairly high catalytic activity in the hydrolysis of bis(4-nitrophenyl) phosphate (BNPP) at room temperature. Comparison of concentration and pH-dependences of the reaction rates with the species distribution diagrams shows that the catalytic hydrolysis of BNPP proceeds via a Michaelis-Menten type mechanism, which involves the Ln2(bic)(OH)4 + complex as the reactive species. The values of the catalytic rate constants and the Michaelis constants are in the range 0.002-0.004 s−1 and 0.35-1.5 mM, respectively, for all lanthanides studied. The half-life for the hydrolysis of BNPP is reduced from 2000 years to ca. 10 min at 25 °C and pH 9.2 in the presence of 5 mM La(III) and 2.5 mM bicine.  相似文献   

8.
Three new complexes [Pt(dpop)(Cl)2], [(Cl)2Pt(dpop)Pt(Cl)2] and [(bpy)2Ru(dpop)Pt(Cl)2](PF6)2 (dpop = dipyrido(2,3-a:3′,2′-h)phenazine) were prepared and studied. The electronic absorption spectra of the complexes display Pt dπ → dpop π* and Ru dπ → dpop π* MLCT transitions at longer wavelengths than for previously reported similar complexes. Results of cyclic voltammograms show reversible dpop centered reductions while for the mixed metal [(bpy)2Ru(dpop)Pt(Cl)2]2+ an irreversible Pt(II) oxidative wave precedes the Ru(II) oxidation/reduction couple. Spectroelectrochemical results show that all oxidative and reductive processes are completely reversible. The [(Cl)2Pt(dpop)Pt(Cl)2] complex cleaves in solution with pseudo-first order kinetics resulting in loss of the Pt dπ → dpop π* MLCT transition at 545 nm.  相似文献   

9.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

10.
The spectroscopy, electrochemistry and electrogenerated chemiluminescence (ECL) of four osmium(II) phenanthroline carbonyl chloride complexes are reported. Three of these compounds also contain diphosphine chelating ligands. ECL is generated in acetonitrile solutions with tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (?ecl = photons emitted per redox event) between 0.011 and 0.13 were obtained in air saturated and deoxygenated solutions with Ru(bpy)32+ (bpy = 2,2′-bipyridine) as a relative standard (?ecl = 1). The ECL intensity peaks at a potential corresponding to oxidation of both TPrA and the osmium systems, while ECL spectra (obtained using absorption filters) are similar to photoluminescence spectra, indicating that emission is from the excited states of the osmium complexes.  相似文献   

11.
12.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

13.
The tris-chelate formed by biguanide, H2NC(NH)NHC(NH)NH2, and Mn(IV) is one of the rarely encountered examples of water-stable mononuclear complexes of this oxidation state. This cation is reduced in aqueous acid by both V(II) and V(III). In contrast to the kinetically straightforward bimolecular reduction by V(II) in 0.5 M HClO4 (k = 7.4 × 103 M−1 s−1 at 22 °C), reductions by excess V(III) yield profiles which are linear (zero-order in MnIV) until the last few percent reaction. Analyses of these composite curves are consistent with the sequences
  相似文献   

14.
A straightforward synthetic method to prepare mononuclear croconato-containing iron (III) complexes, (A)3[Fe(C5O5)3] [A = tetrabutylammonium = n-Bu4N+ (1) and along with their crystal structures and magnetic properties, are reported. The Fe(III) atom adopts a pseudo-octahedral geometry while magnetic susceptibility measurements, in the 2-300 K temperature range, show the occurrence of a high spin state (S = 5/2) in both complexes.  相似文献   

15.
New diruthenium complexes (PPN)4[(NC)4Ru(μ-bptz)Ru(CN)4], (PPN)41, and [(bpy)2Ru(μ-bptz)Ru(CN)4], 2, (PPN+ = bis(triphenylphospine)iminium; bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine; bpy = 2,2′-bipyridine), were synthesised and characterised by spectroscopic and electrochemical techniques. The comproportionation constant Kc = 107.0 of the mixed-valent species [(NC)4Ru(μ-bptz)Ru(CN)4]3− as obtained by oxidation of 14 in CH3CN is much lower than the Kc = 1015.0 previously detected for [(H3N)4Ru(bptz)Ru(NH3)4]5+, reflecting the competition between CN and bptz for the π-electron density of the metals. Comparison with several other bptz-bridged diruthenium(II,III) complexes reveals an approximate correlation between Kc and the diminishing effective π acceptor capacity of the ancillary terminal ligands. In addition to the intense MLCT absorption at λmax = 624 nm, the main IVCT (intervalence charge transfer) band of 13− was detected by spectroelectrochemistry at λmax = 1695 nm (in CH3CN; ε = 3200 M−1 cm−1). The experimental band width at half-height, Δν1/2 = 2700 cm−1, is slightly smaller than the theoretical value Δν1/2 = 3660 cm−1, calculated from the Hush approximation for Class II mixed-valent species. In agreement with comparatively moderate metal-metal coupling, the mixed-valent intermediate 13− was found to be EPR silent even at 4 K. The unsymmetrical mixed-valent complex [(bpy)2RuII(μ-bptz)RuIII(CN)4]+, obtained in situ by bromine oxidation of 2 in CH3CN/H2O, displays a broad NIR absorption originating from an IVCT transition at λmax = 1075 nm (ε ≈ 1000 M−1 cm−1, Δν1/2 ≈ 4000 cm−1). In addition, the lifetime of the excited-state of the mononuclear precursor complex [Ru(bptz)(CN)4]2− was measured in H2O by laser flash photolysis; the obtained value of τ = 19.6 ns reveals that bptz induces a metal-to-ligand electronic delocalisation effect intermediate between that induced by bpy and bpz (bpz = 2,2′-bipyrazine) in analogous tetracyanoruthenium complexes.  相似文献   

16.
[RuCl3 · nH2O] and Na(trans-[RuCl4(DMSO)2]) were reacted with 1-pyrrolidinedithiocarbamate (PDT), its S-methyl ester (PDTM), and N,N-dimethylcarbamodithioic acid methyl ester (DMDTM) in water or methanol in order to obtain the corresponding Ru(III) derivatives. Once isolated and purified, the complexes were characterized by means of elemental analysis, conductivity measurements, FT-IR and 1H NMR spectroscopy, ion electrospray mass spectrometry (ESI-MS), and thermal analyses. The crystal structure of mer-[Ru(DMDTM)(DMSO)Cl3] has been also determined by X-ray crystallography. In vitro cytotoxic activity of all the synthesized complexes was eventually evaluated on some selected human tumor cell lines.  相似文献   

17.
A series of novel octahedral ruthenium(III) complexes involving 6-benzylaminopurine (L) derivatives as N-donor ligands has been prepared by the reaction of [(DMSO)2H][trans-RuCl4(DMSO)2] with the corresponding L derivative. The complexes 1-12 have the general compositions trans-[RuCl4(DMSO)(n-Cl-LH)] ⋅ xSol (1-3), trans-[RuCl4(DMSO)(n-Br-LH)] · xSol (4-6), trans-[RuCl4(DMSO)(n-OMe-LH)] · xSol (7-9) and trans-[RuCl4(DMSO)(n-OH-LH)] · xSol (10-12); n = 2, 3, and 4, x = 0-1.5; and Sol = H2O, DMSO, EtOH and/or (Me)2CO. The complexes have been thoroughly characterized by elemental analysis, UV-visible, FTIR, Raman, and EPR spectroscopy, ES + (positive ionization electrospray) mass spectrometry, thermal analysis, cyclic voltammetry, magnetic and conductivity measurements. The X-ray molecular structure of trans-[RuCl4(DMSO)(3-Br-LH)] ⋅ (Me)2CO (5) revealed the distorted octahedral coordination in the vicinity of the central atom, and also confirmed that the 3-Br-L ligand is present as the N3-protonated N7-H tautomer and is coordinated to Ru(III) through the N9 atom of the purine moiety. The tested complexes have been found to be in vitro non-cytotoxic against K562, G361, HOS and MCF7 human cancer cell lines with IC50 > 100 μM in contrast to the moderate results regarding the antiradical activity with IC50 ≈ 10− 3 M. On the contrary, in vivo antitumor activity screening showed that the prepared Ru(III) complexes possess higher pro-apoptotic activity than NAMI-A. The reduction of Ru(III) to Ru(II) and Ru(II)-species formation in tumor tissues was confirmed by means of a simple method of detection and visualization of intracellular Ru(II) by fluorescence microscopy. The originality of this method is based on the preparation of a Ru(II)-bipyridine complex in situ.  相似文献   

18.
Cobalt(III) complexes with potentially tetradentate salophen (H2salophen = N,N′-bis(salicylidene)-1,2-phenylenediamine) as equatorial ligand and with different axial amine ligands (NH3, cyclohexylamine, aniline, 4-picoline and pyridine) were synthesized and characterized by IR, 1H NMR, elemental analysis. Electronic spectra and electrochemical properties of the complexes were studied in DMF solutions. The lowest energy transitions, which occur between 464.8 and 477 nm, are attributed mainly to the intraligand charge transfer, confirmed by Zindo/S electronic structure calculations. The reduction potentials of Co(III)/Co(II) are more affected than those of Co(II)/Co(I) by the axial amine ligands. The crystal structure of the [CoIII(salophen)(4- picoline)2]ClO4 · CH2Cl2 was determined, indicating that the cobalt(III) center is six coordinated surrounded by the tetradentate salophen ligand and two 4-picoline ligands. The crystal packing of the complex shows a layered structure, in which the perchlorate counter ions and also the lattice solvent molecules are intercalated between the bc planes of the complex cations.  相似文献   

19.
A heterodinuclear (Ru(II), Co(III)) metal polypyridyl complex [(phen)2Ru(bpibH2)Co(phen)2]5+ {phen = 1,10-phenanthroline, bpibH2 = 1,4-bis([1,10]phebanthroline-[5,6-d]imidazol-2-yl)-benzene} has been designed and synthesized. The comparative study on the interactions of the Ru(II)-Co(III) complex with calf thymus DNA (CT-DNA) and yeast tRNA has been investigated by UV-visible spectroscopy, fluorescence spectroscopy, viscosity, as well as equilibrium dialysis and circular dichroism (CD). The antitumor activities of the complex have been evaluated by MTT {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} method and Giemsa staining experiment. These results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes. Furthermore, the complex demonstrates different antitumor activity against selected tumor cell lines in vitro, and can make the cell apoptosis.  相似文献   

20.
The new complex, [RuII(bpy)2(4-HCOO-4′-pyCH2 NHCO-bpy)](PF6)2 · 3H2O (1), where 4-HCOO-4′-pyCH2NHCO-bpy is 4-(carboxylic acid)-4′-pyrid-2-ylmethylamido-2,2′-bipyridine, has been synthesised from [Ru(bpy)2(H2dcbpy)](PF6)2 (H2dcbpy is 4,4′-(dicarboxylic acid)-2,2′-bipyridine) and characterised by elemental analysis and spectroscopic methods. An X-ray crystal structure determination of the trihydrate of the [Ru(bpy)2(H2dcbpy)](PF6)2 precursor is reported, since it represented a different solvate to an existing structure. The structure shows a distorted octahedral arrangement of the ligands around the ruthenium(II) centre and is consistent with the carboxyl groups being protonated. A comparative study of the electrochemical and photophysical properties of [RuII(bpy)2(4-HCOO-4′-pyCH2NHCO-bpy)]2+ (1), [Ru(bpy)2(H2dcbpy)]2+ (2), [Ru(bpy)3]2+ (3), [Ru(bpy)2Cl2] (4) and [Ru(bpy)2Cl2]+ (5) was then undertaken to determine their variation upon changing the ligands occupying two of the six ruthenium(II) coordination sites. The ruthenium(II) complexes exhibit intense ligand centred (LC) transition bands in the UV region, and broad MLCT bands in the visible region. The ruthenium(III) complex, 5, displayed overlapping LC bands in the UV region and a LMCT band in the visible. 1, 2 and 3 were found, via cyclic voltammetry at a glassy carbon electrode, to exhibit very positive reversible formal potentials of 996, 992 and 893 mV (versus Fc/Fc+) respectively for the Ru(III)/Ru(II) half-cell reaction. As expected the reversible potential derived from oxidation of 4 (−77 mV (versus Fc/Fc+)) was in excellent agreement with that found via reduction of 5 (−84 mV (versus Fc/Fc+)). Spectroelectrochemical experiments in an optically transparent thin-layer electrochemical cell configuration allowed UV-Vis spectra of the Ru(III) redox state to be obtained for 1, 2, 3 and 4 and also confirmed that 5 was the product of oxidative bulk electrolysis of 4. These spectrochemical measurements also confirmed that the oxidation of all Ru(II) complexes and reduction of the corresponding Ru(III) complex are fully reversible in both the chemical and electrochemical senses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号