首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [(η7-C7H7)Zr(η5-C5H5)] with two Lewis bases, tetramethylimidazolin-2-ylidene and PMe3, is reported and their stability probed via spectroscopic and theoretical methods. The strongly σ-basic N-heterocyclic carbene forms a stable adduct which has been structurally characterised, whilst the PMe3 ligand coordinates weakly to the metal centre. Variable temperature 31P NMR spectroscopy has been used to determine the activation energy for this process (ΔG = 40.5 ± 1.9 kJ mol−1). DFT calculations have been performed on both complexes and the structures discussed. In addition, the enthalpies for the formation of these compounds have been calculated [ΔH0(Zr-IMe) = −56.3 kJ mol−1; ΔH0(Zr-PMe3) = −2.3 kJ mol−1] and show that the N-heterocyclic carbene forms a thermodynamically much more stable adduct than that with PMe3.  相似文献   

2.
The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (ΔG, 57.8 kJ mol−1; ΔH, 52.1 kJ mol−1; ΔS, −19.2 J K−1 mol−1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol−1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.  相似文献   

3.
The dissociation kinetics of the europium(III) complex with H8dotp ligand was studied by means of molecular absorption spectroscopy in UV region at ionic strength 3.0 mol dm−3 (Na,H)ClO4 and in temperature region 25-60 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLIFS) was employed in order to determine the number of water molecules in the first coordination sphere of the europium(III) reaction intermediates and the final products. This technique was also utilized to deduce the composition of reaction intermediates in course of dissociation reaction simultaneously with calculation of rate constants and it demonstrates the elucidation of intimate reaction mechanism. The thermodynamic parameters for the formation of kinetic intermediate (ΔH0 = 11 ± 3 kJ mol−1, ΔS0 = 41 ± 11 J K−1 mol−1) and the activation parameters (Ea = 69 ± 8 kJ mol−1, ΔH = 67 ± 8 kJ mol−1, ΔS = −83 ± 24 J K−1 mol−1) for the rate-determining step describing the complex dissociation were determined. The mechanism of proton-assisted reaction was proposed on the basis of the experimental data.  相似文献   

4.
Ferric human serum heme-albumin (heme-HSA) shows a peculiar nuclear magnetic relaxation dispersion (NMRD) behavior that allows to investigate structural and functional properties. Here, we report a thermodynamic analysis of NMRD profiles of heme-HSA between 20 and 60 °C to characterize its hydration. NMRD profiles, all showing two Lorentzian dispersions at 0.3 and 60 MHz, were analyzed in terms of modulation of the zero field splitting tensor for the S = 5/2 manifold. Values of correlation times for tensor fluctuation (τv) and chemical exchange of water molecules (τM) show the expected temperature dependence, with activation enthalpies of −1.94 and −2.46 ± 0.2 kJ mol−1, respectively. The cluster of water molecules located in the close proximity of the heme is progressively reduced in size by increasing the temperature, with Δ= 68 ± 28 kJ mol−1 and Δ= 200 ± 80 J mol−1 K−1. These results highlight the role of the water solvent in heme-HSA structure-function relationships.  相似文献   

5.
Removal of a basic dye (Methylene Blue) from aqueous solution was investigated using a cross-linked succinyl-chitosan (SCCS) as sorbent. The chemical structures of chitosan and its derivatives were testified by FT-IR. X-ray diffraction, DTG analysis and swelling measurements were conducted to clarify the characteristics of the chemically modified chitosan. The effect of process parameters, such as pH of the initial solution, and concentrations of dyes on the extent of Methylene Blue (MB) adsorption was investigated. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 289.02 mg/g at 298 K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined to be −25.32 kJ mol−1, −6.76 kJ mol−1 and −62.36 J mol−1 K−1, respectively, which leads to a conclusion that the adsorption process is spontaneous and exothermic.  相似文献   

6.
Kinetic studies of X exchange on [AuX4] square-planar complexes (where X=Cl and CN) were performed at acidic pH in the case of chloride system and as a function of pH for the cyanide one. Chloride NMR study (330-365 K) gives a second-order rate law on [AuCl4] with the kinetic parameters: (k2Au,Cl)298=0.56±0.03 s−1 mol−1 kg; ΔH2‡ Au,Cl=65.1±1 kJ mol−1; ΔS2‡ Au,Cl=−31.3±3 J mol−1 K−1 and ΔV2 Au,Cl=−14±2 cm3 mol−1. The variable pressure data clearly indicate the operation of an Ia or A mechanism for this exchange pathway. The proton exchange on HCN was determined by 13C NMR as a function of pH and the rate constant of the three reaction pathways involving H2O, OH and CN were determined: k0HCN,H=113±17 s−1, k1HCN,H=(2.9±0.7)×109 s−1 mol−1 kg and k2HCN,H=(0.6±0.2)×106 s−1 mol−1 kg at 298.1 K. The rate law of the cyanide exchange on [Au(CN)4] was found to be second order with the following kinetic parameters: (k2Au,CN)298=6240±85 s−1 mol−1 kg, ΔH2 Au,CN=40.0±0.8 kJ mol−1, ΔS2 Au,CN=−37.8±3 J mol−1 K−1 and ΔV2 Au,CN=+2±1 cm3 mol−1. The rate constant observed varies about nine orders of magnitude depending on the pH and HCN does not act as a nucleophile. The observed rate constant of X exchange on [AuX4] are two or three orders of magnitude faster than the Pt(II) analogue.  相似文献   

7.
A new ligand, N,N′-dibenzylethane-1,2-diamine (L) and its four transition metal(II) complexes, ML2(OAc)2 · 2H2O (M = Cu, Ni, Zn, Co), have been synthesized and characterized by elemental analysis, mass spectra, molar conductivity, NMR and IR. Moreover, the crystals structure of Cu(II) and Ni(II) complexes characterized by single crystal X-ray diffraction showed that the complexes have a similar molecular structure. Ni(II) has an regular octahedral coordination environment complexes, but typical Jahn Teller effect influenced Cu(II) in an elongated octahedral environment. The interaction between complexes and calf thymus DNA were studied by UV and fluorescence spectra measure, which showed that the binding mode of complexes with DNA is intercalation. Under physiological pH condition, the effects of Cu(OAc)2L2 · 2H2O and Ni(OAc)2L2 · 2H2O on human serum albumin were examined by fluorescence. The results of spectroscopic measurements suggested that the hydrophobic interaction is the predominant intermolecular force. The enthalpy change ΔH0 and the entropy change ΔS0 of Cu(OAc)2L2 · 2H2O and Ni(OAc)2L2 · 2H2O were calculated to be −11.533 kJ mol−1 and 46.339 J mol−1 K−1, −11.026 kJ mol−1 and 46.396 J mol−1 K−1, respectively, according to the Scatchard’s equation. The quenching mechanism and the number of binding site (n ≈ 1) were also obtained from fluorescence titration data.  相似文献   

8.
The reaction between [Mn(CO)5Br] and di-2-pyridylketone-p-nitrophenylhydrazone (dpknph) in diethyl ether under ultrasonic conditions gave fac-[Mn(CO)3(dpknph)Br] in good yield. Optical and thermodynamic measurements on fac-[Mn(CO)3(dpknph)Br] in non-aqueous polar solvents revealed reversible interconversion between two intense charge transfer absorption bands due to π-π* (dpk), followed by dpk → nitro intraligand charge transfer transition (ILCT), mixed with metal ligand charge transfer transition (MLCT) due to . In non-polar solvents, a single absorption band appeared. Extinction coefficients of 46 200 ± 2000 and 28 400 ± 2000 M−1 cm−1 were calculated in DMSO for the low- and high-energy electronic states of fac-[Mn(CO)3(dpknph)Br] using excess NaBF4. Changes in enthalpy (ΔHø) of +14.0 and −12.1 kJ mol−1, entropy (ΔSø) of +28.65 and −64.30 J mol−1 K−1, and free energy (ΔGø) of +5.48 and +7.08 kJ mol−1 at 298 K were calculated for the interconversion between the high and low energy electronic states of fac-[Mn(CO)3(dpknph)Br]. These results allow for the use of these systems (fac-[Mn(CO)3(dpknph)Br] and surrounding solvent or solute molecules) as optical sensors for a variety of physical and chemical stimuli that include metal ions. Group 12 metal ions in concentrations as low as 1.00 × 10−9 M can be detected and determined using fac-[Mn(CO)3(dpknph)Br] in dmso in the presence and absence of NaBH4.  相似文献   

9.
Reaction of the five-coordinate trigonal-bipyramidal platinum(II) complex, [Pt(pt)(pp3)](BF4) (pt = 1-propanethiolate, pp3 = tris[2-(diphenylphosphino)ethyl]phosphine), with I in chloroform gave the five-coordinate square-pyramidal complex with a dissociated terminal phosphino group and an apically coordinated iodide ion in equilibrium. The thermodynamic parameters for the equilibrium between the trigonal-bipyramidal and square-pyramidal geometries, [Pt(pt)(pp3)]+ + I ? [PtI(pt) (pp3)], and the kinetic parameters for the chemical exchange were obtained as follows: , ΔH0 = − 10 ± 2.4 kJ mol−1, ΔS0 = − 36 ± 10 J K−1 mol−1, , ΔH = 34 ± 4.7 kJ mol−1, ΔS = − 50 ± 21 J K−1 mol−1. The square-planar trinuclear platinum(II) complex was formed by bridging reaction of one of the terminal phosphino groups of trigonal-bipyramidal [PtCl(pp3)]Cl with trans-[PtCl2(NCC6H5)2] in chloroform. From these facts, ligand substitution reactions of [PtX(pp3)]+ (X = monodentate anion) are expected to proceed via an intermediate with a dissociated phosphino group. The rate constants for the chloro-ligand substitution reactions of [PtCl(pp3)]+ with Br and I in chloroform approached the respective limiting values as concentrations of the entering halide ions are increased. These kinetic results confirmed the preassociation mechanism in which the square pyramidal intermediate with a dissociated phosphino group and an apically coordinated halide ion is present in the rapid pre-equilibrium.  相似文献   

10.
The linkage isomers, (OC)5M[κ1-PPh2 CH2CH(PPh2)2] 1 and (OC)5M[κ1-PPh2 CH(PPh2)CH2PPh2] 2 (M = Cr, Mo and W) exist in equilibrium at room temperature. Equilibrium constants for 1Cr ? 2Cr, 1Mo ? 2Mo and 1W ? 2W at 25 °C in CDCl3 are 2.61, 5.0 and 4.74, respectively. Enthalpy favors the forward reaction (ΔH = −13.5, −12 and −12.2 kJ mol−1, respectively) while entropy favors the reverse reaction (ΔS = −37.6, −28 and −28.2 J K−1 mol−1, respectively). Isomerization is much faster than chelation with 1Mo ? 2Mo ? 1W ? 2W > 1Cr ? 2Cr. Enthalpies of activation for 1Cr ? 2Cr and 1W ? 2W are 119.0 and 92.6 kJ mol−1, respectively, and entropies of activation are 1.4 and −28.2 J K−1 mol−1, respectively. Isomerization is 104 times faster for these complexes than for (OC)5M[κ1-PPh2CH2CH2P(p-tolyl)2]. A novel mechanism is proposed to account for the rate differences. The X-ray crystal structure of 2W shows that the phosphorus atom of the short phosphine arm lies very close to a carbon atom of the W(CO)4 equatorial plane (3.40 Å) which could allow “through-space” coupling, accounting in part for the observation of long-range JPC and JPW coupling. The X-ray structure of (OC)5W[κ1-PPh2 C(CH2)PPh2] 5W has been determined for comparison to 2W.  相似文献   

11.
Slow pyrolysis or carbonization promotes the conversion of animal manures such as swine manure into charcoal. In this paper, the carbonizing kinetics of swine solids taken from different treatment stages were investigated with a thermogravimetric analyzer. Compared to their biologically stabilized counterpart (lagoon sludge) with an activation energy of 160 kJ mol−1, the activation energies for fresh swine solid samples such as homogenized flushed manure and dewatered solids were much lower between 92 and 95 kJ mol−1. Compared to the kinetics of first order decomposition of cellulose, the pyrolytic decomposition of the swine manures were more complex with the reaction orders varying at 3.7 and 5.0. The two different mathematical methods employed in this paper yielded the similar values of activation energy (E) and pre-exponential factor (A), confirming the validity of these methods. The results of this study provide useful information for development of farm-scale swine solid carbonization process.  相似文献   

12.
The kinetic results of the oxidative addition of iodomethane to Bu4N[Ir2(μ-Dcbp)(cod)2] (Dcbp = 3,5-dicarboxylatepyrazolate anion) show that oxidative addition can occur via a direct equilibrium pathway (K1 = 88(22) acetone, 51(3) 1,2-dichloroethane, 55(4) dichloromethane, 52(12) acetonitrile and 43(5) M−1 chloroform) or a solvent-assisted pathway (k2, k3). Oxidative addition occurs mainly along the direct pathway, which is a factor 10-40 faster than the solvent-assisted pathway. The observed solvent effect cannot be attributed to the donosity or polarity of the solvents. The fairly negative ΔS value (−110(7) J K−1 mol−1) and the positive ΔH value (+47(2) kJ mol−1) for the oxidative addition step are indicative of an associative process.  相似文献   

13.
The kinetics of the reaction of Cr(CN)5(H2O)2− with NCS and were studied at pH 5.0 and at pH 6.3-7.0, respectively, as a function of the temperature between 25.0 and 55.0 °C, and at various ionic strengths. Anation occurs in competition with aquation of CN, with rate constants that exhibit less-than-first-order dependence on the concentration of the entering anions. The results are interpreted in terms of ligand interchange in a context of association of the two reacting anions mediated by the Na+ or Ca2+ counterions. The degree of aggregation depends mainly on the total cationic charge rather than on the ionic strength, and is ca. 2-fold larger for than for NCS. Within the associated species, is a better entering ligand than NCS by a factor of 4.5. The Cr(CN)5(NCS)3− and Cr(CN)5(N3)3− complexes were also synthesized, and the rates of aquation of NCS and were measured at pH 5.0 and between 55.0 and 80.0 °C, over the same range of ionic strengths. The ionic strength enhances the anation rates but has little effect on the aquation rates. The average activation enthalpies of the interchange step are 80 ± 3 and 76 ± 3 kJ mol−1 for entry of NCS and , respectively. Those of the corresponding aquation reactions are 94 ± 4 and 107 ± 4 kJ mol−1. Within error limits, all ΔH values are independent of the ionic strength. The results are consistent with an Id mechanism for substitution in Cr(CN)5Xz complexes.  相似文献   

14.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11-tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. Kinetic data are satisfactorily fitted by the rate law, R = kOH[OH][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 × 103 dm3 mol−1 s−1 at 25.0 ± 0.1 °C with I = 0.10 mol dm−3 (NaClO4). The large ΔH, 61.7 ± 3.2 kJ mol−1, and the large positive ΔS, 30.2 ± 10.8 J K−1 mol−1, strongly support a free-base-catalyzed mechanism for the reaction.  相似文献   

15.
The accessible inclusion sites of insoluble copolymers containing β-cyclodextrin (β-CD) were studied in aqueous solutions by measuring the absorbance changes (decolourization) of phenolphthalein (phth) at pH 10.5. The various copolymers were reacted at different β-CD:crosslinker mole ratios with five individual types of crosslinker agents (epichlorohydrin (EP), sebacoyl chloride (SCL), terephthaloyl chloride (TCL), glutaraldehyde (GLU), and poly(acrylic) acid (PAA), respectively). The decolourization provided estimates of the 1:1 binding constants (K1) for the β-CD monomer/phth complex. Comparable values of K1 were measured for copolymer/phth complexes with highly accessible β-CD inclusion sites as compared with the 1:1 β-CD/phth complex. The surface accessibility of the β-CD inclusion binding sites for the polymers ranged from ∼10 to 72%. The observed variability of the inclusion sites was attributed to: (i) steric effects in the annular hydroxyl region of β-CD, (ii) the degree of crosslinking of the copolymer and (iii) the accessibility of the micropore sites within the copolymers. The Gibbs free energy (ΔG°) and site occupancy (θ) of phth adsorbed to the copolymer materials was estimated independently using the Sips isotherm model. The ΔG° values ranged between −27.6 and −30.9 kJ mol−1 for the copolymers and are in close agreement with the value for the 1:1 β-CD/phth complexes (ΔG° = −27 kJ mol−1) in aqueous solution.  相似文献   

16.
17.
The kinetics of the complexation of Ni(II) with 1,10-phenanthroline(phen), 4,7-dimethyl-1,10-phenanthroline(dmphen), and 5-nitro-1,10-phenanthroline(NO2phen) in acetonitrile-water mixed solvents of acetonitrile mole fraction xAN = 0, 0.05, 0.1, 0.2 and 0.3 at 288, 293, 298 and 303 K have been studied by stopped-flow method at ionic strength of 1.0 (NaClO4) and pH 7.4. The corresponding activation enthalpy, entropy, and free energy were determined from the observed rate constants. The complexation of Ni(II) with the three ligands has comparable observed rate constants; in pure water the observed rate constants are (×103 dm3 mol−1 s−1) 2.31, 2.57, and 1.38 for phen, dmphen and NO2phen, respectively. The corresponding activation parameters for the three ligands are, however, considerably different; in pure water the ΔHS (kJ mol−1/J K−1 mol−1) are 44.7/−30.2, 19.5/−114.1, and 32.2/−76.9 for phen, dmphen, and NO2phen, respectively. The effects of solvent composition on the kinetics are also markedly different for the three ligands. The ΔH and ΔS showed a minimum at xAN = 0.1 for phen; for dmphen and NO2phen, however, maxima at xAN = 0.2 were observed. Nevertheless, there is an effective enthalpy-entropy compensation for the ΔHS of all the three ligands, demonstrating the significant effects of the changes in solvation and solvent structure on the complexation kinetics. As the rate-determining step of Ni(II) complexation is the dissociation of a water molecule from Ni(II), the solvent and ligand dependencies in the Ni(II) complexation kinetics are ascribed to the change in solvation status of the ligands and the altered solvent structures upon changing solvent composition.  相似文献   

18.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

19.
Two isomers of the N,O-coordinated acetylpyrrolyl complex [Ru(PPh3)2(CO)(NC4H3C(O)CH3)H] {cis-N,H (1) and trans-N,H (2)} have been prepared as models for catalytic intermediates in the Murai reaction. Complex 2 isomerises to 1 upon heating via a dissociative pathway (ΔH = 195 ± 41 kJ mol−1; ΔS = 232 ± 62 J mol−1 K−1); the mechanism of this process has been modeled using density functional calculations. Complex 2 displays moderate catalytic activity for the Murai coupling of 2′-methylacetophenone with trimethylvinylsilane, but 1 proved to be catalytically inactive under the same conditions.  相似文献   

20.
α-Amylase from Sorghum bicolor, is reversibly unfolded by chemical denaturants at pH 7.0 in 50 mM Hepes containing 13.6 mM calcium and 15 mM DTT. The isothermal equilibrium unfolding at 27 °C is characterized by two state transition with ΔG (H2O) of 16.5 kJ mol−1 and 22 kJ mol−1, respectively, at pH 4.8 and pH 7.0 for GuHCl and ΔG (H2O) of 25.2 kJ mol−1 at pH 4.8 for urea. The conformational stability indicators such as the change in excess heat capacity (ΔCp), the unfolding enthalpy (Hg) and the temperature at ΔG = 0 (Tg) are 17.9 ± 0.7 kJ mol−1 K−1, 501.2 ± 18.2 kJ mol1 and 337.3 ± 6.9 K at pH 4.8 and 14.3 ± 0.5 kJ mol−1 K−1, 509.3 ± 21.7 kJ mol−1 and 345.4 ± 4.8 K at pH 7.0, respectively. The reactivity of the conserved cysteine residues, during unfolding, indicates that unfolding starts from the ‘B’ domain of the enzyme. The oxidation of cysteine residues, during unfolding, can be prevented by the addition of DTT. The conserved cysteine residues are essential for enzyme activity but not for the secondary and tertiary fold acquired during refolding of the denatured enzyme. The pH dependent stability described by ΔG (H2O) and the effect of salt on urea induced unfolding confirm the role of electrostatic interactions in enzyme stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号