首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of iminopyridine ligands; cyclopropylpyridin-2-ylmethyleneamine (A), cyclopentylpyridin-2-ylmethyleneamine (B), cyclohexylpyridin-2-ylmethyleneamine (C), and cycloheptylpyridin-2-ylmethyleneamine, (D) and their copper(I) complexes, [Cu(L)2]+ (1a-1d) and [Cu(L)(PPh3)2]+ (2a-2d) have been synthesized and characterized by CHN analyses, 1H NMR and IR and UV-Vis spectroscopy. Structures of 1a, 1b, 1c and 2a were determined by X-ray crystallography. The coordination polyhedron about the CuI center in the complexes is best described as a distorted tetrahedron. The dihedral angles between the least-squares planes of the chelate ligands show considerable variation from 86.1° in 1a to 68.3° in 1b, indicating the importance of packing forces in the crystalline environment. The UV-Vis spectra of the complexes are characterized by first metal to ligand charge transfer bands increasing in wavelength with increasing size of the ring substituents in the ligands, except for the cyclopropyl compounds (1a and 2a), in good agreement with the variation of the dihedral angles between the ligand planes. Cyclic voltammetry of the complexes indicates a quasireversible redox behavior for the complexes. The bulkier ligands (PPh3) inhibit the geometric distortion within the oxidized form and the redox potentials of complexes 2a-2d are shifted to more positive values, therefore.  相似文献   

2.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

3.
Reaction of HgCl2 with trans-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine (L1) and cis-(±)-(phenyl(2,4,5-tri(pyridin-2-yl)-4,5-dihydroimidazol-1- yl)methanone (L2) gives mononuclear complexes, 1 and 2. In these complexes L1 and L2 behave as tridentate and bidentate chelating ligands, giving distorted trigonal bipyramidal and tetrahedral coordination geometries, respectively. X-ray diffraction studies revealed a series of N-H?Cl, C-H?Cl, C-H?N and C-H?π interactions in 1 giving a 3D network, and N-H?Cl, C-H?Cl, C-H?π and π?π interactions in 2 giving a 2D network in the crystal lattice. Since both ligands should have a similar binding capacity to the mercury ions, the variations observed for coordination number and geometry should be a consequence of supramolecular stabilizing effects.  相似文献   

4.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

5.
Herein, we describe the synthesis of N,N′,S donor ligands 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-3-(methythio)propyl)-4-methoxy-3,5-dimethylpyridine (L1) and 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-2-(methythio)ethyl)-4-methoxy-3,5-dimethylpyridine (L2). Cu(I) complexes were prepared by reacting L1 or L2 with [Cu(CH3CN)4]BF4 or CuCl. The coordination behavior of the thioether arm of the ligands was found to determine the nuclearity of the resulting complexes, in which [Cu(L1)PPh3]BF4 (1) is polynuclear, [Cu(L2)PPh3]BF4 (2) is mononuclear, while [Cu(L1)]2(BF4)2 (3), [Cu(L2)CH3CN]2(BF4)2 (4), and [Cu(L1)Cl]2 (5) are dinuclear. In the dimeric complex [Cu(L2)Cl]2 (6), the sulfur atoms are not metal-bound. Rather, the two bridging chloride ions link the two copper centers. Compounds 4-6 are luminescent in the solid state, and exhibit emission bands centered at 490 nm (4), 544 nm (5), and 562 nm (6), respectively. Their excitation spectra display bands at 280 nm and 380 nm. According to DFT calculations, the HOMO is distributed partially over the metal centers and partially over the chloride anions (5 and 6) or the sulfur atoms (4) of the ligands, while the LUMO is a π∗ antibonding pyridine orbital. This suggests that the emission properties are derived from metal-to-ligand charge-transfer (MLCT), halide-to-ligand charge-transfer (XLCT), and ligand-to-ligand charge-transfer (LLCT) excited states.  相似文献   

6.
New series of 5-substituted-8-hydroxyquinolines HLn (1-6) bearing aliphatic or aromatic amido groups were synthesised. The chelating ability of these ligands toward the zinc(II) ion was tested and the photophysical characterisation of the resulting complexes (ZnLn)2 · 2H2O (7-12) is reported and compared to those of the uncomplexed ligands. The photophysical data of 1-6 revealed interesting differences between aliphatic (1-3) and aromatic (4-6) amido-substituted species which, however, are no longer evident upon metal complexation. In fact while the ligands 1-3 showed a very high quantum yield (2, λem=470 nm; Φ=0.22) higher than that of the unsubstituted HQ compound, the ligands 4-6 displayed low quantum yield, similar to that of the complexes 7-12, which was in turn lower than that of ZnQ2·2H2O. The behaviour of these compounds is discussed with particular reference to the possibility of controlling the photophysical properties of such compounds through selective modification of the amido substituents.  相似文献   

7.
In situ reaction of the aminobenzoic acids 2-aminobenzoic acid and 3,5-diaminobenzoic acid with salicylaldehyde provide easy access to the ligands 2-[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L1) and 3,5-bis[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L2). Addition of a Fe(II) or Cu(II) salt to the solution of the ligand yields the corresponding Fe and Cu complexes. The species synthesized have been structurally characterized by single-crystal X-ray diffraction. The Fe(II) complex [Fe(L1)(MeOH)3] (1) crystallizes in the triclinic space group . The Cu(II) complex [Cu(L1)] (2) is a one-dimensional chain and crystallizes in the monoclinic space group P21. The Cu(II) complex [Et3NH]2[Cu2(L2)2] (3) crystallizes in the monoclinic space group P21/n. The magnetic properties of 1, 2 and 3 have been studied, showing that the Cu(II) ions of 2 and 3 are ferromagnetically coupled. Complexes 1 and 3 have strong potential as metal-bearing building blocks for the synthesis of metal-organic frameworks.  相似文献   

8.
Two new linear and V-shaped tetradentate ligands, namely 1,4-bis(2-hexahydropyrimidyl)benzene (L) and 1,3-bis(2-hexahydropyrimidyl)benzene (L), and their silver(I) complexes, [Ag2L(μ-ONO2)](NO3) · 2H2O (1), [Ag2L(μ-pn)](NO3)2 (2), [Ag2L(μ-pn)](ClO4)2 (3) and [Ag4L2(H2O)](NO3)4 · 5H2O (4) (pn=1,3-diaminopropane) have been synthesized in situ and structurally characterized by single-crystal X-ray diffraction. 1 and 2 were obtained from the same reaction solution but different crystallization conditions. 1 is an one-dimensional chain featuring cuboid tetranuclear silver(I) units interconnected through monoatomic nitrate bridges. Both 2 and 3 are ribbon-like helical compounds in which each L ligand acts in a tetradentate bridging mode to interconnect four metal atoms, and each pn ligand functions in a bidentate bridging mode to link a pair of metal atoms. 4 shows a truncated square-pyramidal tetranuclear motif arose by the V-shaped L ligand. Close Ag?Ag separations (2.901-2.939 Å) assisted by bis(hexahydropyrimidine) bridges were observed in 1 and 4, indicating metal-metal interactions. Photoluminescence of 1-4 has also been observed in the solid state and solution at room temperature and low temperature, respectively.  相似文献   

9.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

10.
New sulfur derivatives of phosphoramidite ligands were synthesized and the impact of the sulfur unit on the spectroscopic properties of their rhodium and iridium complexes was investigated. The new ligands Bn2NPSCH2CH2Sa(P-Sa) (Bn = benzyl, 4), Bn2NPSCHCHSa(CH2)3CaH2(P-Sa)(Ca-Sa) (6) and Bn2NP(4-XC6H4OMe)2 (X = S, 7a; X = O, 7b) were converted to the rhodium and iridium complexes trans-[Rh(CO)Cl(L)2] (L = 4, 6, 7), [RhCl(COD)(L)] (L = 4, 6, 7), [IrCl(COD)(7a)] and [IrCl2Cp∗(6)]. For comparison, some phosphoramidite complexes of these formulations also were synthesized. The new metal complexes were spectroscopically analyzed. For the carbonyl complexes, the νCO IR stretching frequencies were lower than for the corresponding phosphite and phosphoramidite ligands. The 1JPRh coupling constants for the rhodium complexes with the new ligands were also smaller than for the respective phosphoramidite and phosphite complexes. Finally, the 1JPSe coupling constants of the selenides of the new ligands were lower than those of the phosphoramidite ligands but higher than for PPh3. The spectroscopic data reveal that the new thio ligands 4, 6 and 7a are more electron donating than phosphites and phosphoramidites but less electron donating than PPh3.  相似文献   

11.
Two oxazolone-derived potential ligands with enethioether substituents have been synthesized that differ by the terminal thioether moiety (S-Et in L1, S-C6H4(OMe)-2 in L2). Both L1 and L2 behave as bidentate {NS} chelate ligands to form stable complexes with copper(I) triflate that crystallize as dimeric complexes [L2Cu2(OTf)2] (4 and 5) featuring a central {Cu2S2} diamond core with distinctly different Cu-S bonds. L1 as well as 4 and 5 have been characterized by single crystal X-ray diffraction. NMR spectroscopy including 1H and 19F DOSY experiments reveals that 4 and 5 dissociate into monomeric species [LCu(OTf)] (4′ and 5′) in CDCl3 solutions. 4′ and 5′ retain the {NS} binding motif of the oxazolone-derived ligands, but are in slow equilibrium with their {OS} isomers 4″ and 5″ that result from E/Z isomerization of the exocyclic enethioether double bond.  相似文献   

12.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

13.
Four new ligands containing a pyridine or thiazole group and one or more N-(diphenylphosphinomethyl)amine functions have been prepared and employed for the synthesis of Mo(0) and W(0) carbonyl and dinitrogen complexes. For comparison coordination of the literature-known ligand N,N-bis(diphenylphosphinomethyl)-methylamine (PNP, 1) to such systems has been investigated as well. Two new ligands are N,N-bis(diphenylphosphinomethyl)-2-aminopyridine (pyNP2, 2) and N,N′-bis(diphenylphosphinomethyl)-2,6-diaminopyridine (PpyP, 3). In a third new ligand, N-diphenylphosphinomethyl-2-aminothiazole (thiazNP, 4), the pyridine group is replaced by thiazol. Finally, the pentadentate ligand N,N,N′,N′-tetrakis(diphenylphosphinomethyl)-2,6-diaminopyridine (pyN2P4, 5) has been synthesized. Coordination of ligands 2, 3 and 4 to low-valent metal centers is investigated on the basis of the three molybdenum carbonyl complexes [Mo(CO)3(NCCH3)(pyNP2)] (6), [Mo(CO)4(PpyP)] (7) and [Mo(CO)4(thiazNP)] (8), respectively, all of which are structurally characterized. Moreover, employing ligands 1 and 2 the two dinitrogen complexes [W(N2)2(dppe)(PNP)] (9) and [Mo(N2)2(dppe)(pyNP2) (10), respectively, are prepared. Both systems are investigated by vibrational and NMR spectroscopy; in addition, complex 10 is structurally characterized.  相似文献   

14.
The Schiff base ligands 2-(2,6-diisopropylphenyliminomethyl)phenol H(L1), 5-diethylamino-2-(2,6-diisopropylphenyliminomethyl)phenol H(L2), 2,4-di-tert-butyl-6-(2,6-diisopropylphenyliminomethyl)phenol H(L3), 3-(2,6-diisopropylphenyliminomethyl)naphthalen-2-ol H(L4) and 4-(2,6-diisopropylphenyliminomethyl)-5-hydroxymethyl-2-methylpyridin-3-ol H(L5) have been synthesized by the condensation, respectively, of salicylaldehyde, 4-(diethylamino)salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, 2-hydroxy-1-napthaldehyde and pyridoxal with 2,6-diisopropylaniline. The copper(II) bis-ligand complexes [Cu(L1)2] 1, [Cu(L2)2] 2, [Cu(L3)2] 3, [Cu(L4)2] 4 and [Cu(L5)2] · CH3OH 5 of these ligands have been isolated and characterized. The X-ray crystal structures of two of the complexes [Cu(L1)2] 1 and [Cu(L5)2] · CH3OH 5 have been successfully determined, and the centrosymmetric complexes possess a CuN2O2 chromophore with square planar coordination geometry. The frozen solution EPR spectra of the complexes reveal a square-based CuN2O2 chromophore, and the values of g and g/A index reveal enhanced electron delocalization by incorporating the strongly electron-releasing -NEt2 group (2) and fusing a benzene ring on sal-ring (4). The Cu(II)/Cu(I) redox potentials of the Cu(II) complexes reveal that the incorporation of electron-releasing -NEt2 group and fusion of a benzene ring lead to enhanced stabilization of Cu(II) oxidation state supporting the EPR spectral results. The hydrogen bonding interactions between the two molecules present in the unit cell of 5a generate an interesting two-dimensional hydrogen-bonded network topology.  相似文献   

15.
Reactions of GaCl3 with pyrazole-containing ligands of the pyrazole-imine-phenol (HL1-HL3) or pyrazole-amine-phenol (HL4-HL6) types led to the synthesis of well-defined [GaL2]+ homoleptic complexes (1-6). Complexes 1-6 were characterized by elemental analysis, ESI-MS (electrospray ionization-mass spectrometry), IR and NMR spectroscopies, and in the case of Complex 1 also by X-ray diffraction analysis. In complexes 1-3, the pyrazole-imine-phenolate ligands act as monoanionic chelators that coordinate to the metal in a meridional fashion, while 4-6 contain monoanionic and facially coordinated pyrazole-amine-phenolate ligands. Complexes 1-3 have a greater stability in solution compared to 4-6, which have shown a more pronounced tendency to release the respective ancillary ligands. The cytotoxicity of 1-6 and of the respective ligands (HL1-HL6) was evaluated against human prostate cancer cells PC-3 and human breast cancer cells MCF-7. The substituents of the phenolate rings strongly influenced the cytotoxicity of the compounds. Complexes 3 and 6 that contain chloride substituents at the phenolate rings have shown the highest cytotoxicity, including in the cisplatin-resistant PC-3 cell line. The cytotoxic profile of 3 and 6 is very similar to the one displayed by the respective anchor ligands, respectively HL1 and HL6. The cytotoxic activity of 3 and 6 is slightly increased by the presence of transferrin, and both complexes provoke cell death mainly by induction of apoptotic pathways.  相似文献   

16.
Reaction of the N-alkylaminopyrazole (NNN) ligands bis[(3,5-dimethyl-1-pyrazolyl)methyl]ethylamine (bdmae) and bis[(3,5-dimethyl-1-pyrazolyl)methyl]isopropylamine (bdmai) with [PdCl2(CH3CN)2] in a 1:1 M/L ratio in CH2Cl2 produces cis-[PdCl2(NNN)] (NNN = bdmae (1), bdmai (2)). The solid state structure of complex 1 was determined by X-ray diffraction studies. The bdmae ligand is coordinated through the two Npz atoms to the metal atom, which completes its coordination with two chlorine atoms in a cis disposition.Treatment of the corresponding ligand with [PdCl2(CH3CN)2] in 1:1 M/L ratio in the presence of AgBF4 and metathesis with NaBPh4 in CH2Cl2/CH3OH (3:1) gave [PdCl(bdmae)](BPh4) (3), and in the presence of NaBPh4 in CH2Cl2/CH3CN (3:1) gave [PdCl(bdmai)](BPh4) (4). Complexes 1 and 2 were again obtained when complexes 3 and 4 were heated under reflux in a solution of Et4NCl in acetonitrile. These Pd(II) compounds were characterised by elemental analyses, conductivity measurements, IR, 1H and 13C{1H} NMR, HMQC and NOESY spectroscopies. The NMR studies of the complexes prove the rigid conformation of the ligands when they are complexed.  相似文献   

17.
In our efforts to investigate the relationships between the structures of ligands and their complexes, two structurally related ligands, 1-(2-pyridylmethyl)-1H-benzimidazole (L1) and 1-(4-pyridylmethyl)-1H-benzimidazole (L2), and their four complexes, [Zn(L1)2Cl2] (1), [Hg(L1)Br2] (2), {[Zn(L2)Cl2](CH3CN)} (3) and [Hg(L2)Br2]2(CH3CN)2 (4) were synthesized and structurally characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction analysis. Structural analyses show that 1 has a mononuclear structure, and 2 and 3 both take 1D structure. While 4 takes a dinuclear structure. 1, 2 and 4 were further linked into higher-dimensional supramolecular networks by weak interactions, such as C-H?Cl and C-H?Br H-bonding, C-H?π, and π?π stacking interactions. The structural differences of 1-4 may be attributed to the difference of the spatial positions of the terminal N donor atoms in the pendant pyridyl groups in L1 and L2, in which the pyridine rings may act as the directing group for coordination and the benzimidazole rings act as the directing group for π?π stacking and C-H?π interactions. The luminescent properties of the corresponding complexes and ligands have been further investigated.  相似文献   

18.
The coordination chemistry and reactivity of zinc(II) complexes supported by monoanionic hydrotris(pyrazolyl)borate ligands substituted by 3,3,3-mesityl groups (TpMs) and 3,3,5-mesityl groups (TpMs∗) have been investigated. Salt metathesis of ZnCl2, ZnEt2, and Zn(OAc)2 with Tl[TpMs] or Tl[TpMs∗] cleanly afforded the corresponding compounds TpMsZnCl (1), TpMsZnEt (2), TpMs∗ZnEt (3), and TpMsZnOAc (5). Compound 3 slowly disproportionates in benzene solution to afford the bis(ligand) complex (κ2-TpMs∗)2Zn (4). Acetate complex 5 as well as TpMsZnOCOPh (6) and [TpMs∗ZnOAc]2 (7) were alternatively prepared by acidolysis of the parent ethyl complexes (2, 3) with the corresponding carboxylic acid. No reaction was observed between 2 and 3 and alcohols (ROH; R = Et, iPr, Bn), while salt metathesis reactions of ZnEt(OR) with Tl[TpMs] led to 2 instead of the desired zinc-alkoxide complex. Compounds 1-7 were characterized by elemental analysis, 1H and 13C NMR spectroscopy, as well as by X-ray diffraction studies for 1, 2, 4, 5 and 7. The former compounds adopt a monomeric structure in the solid state while [TpMs∗ZnOAc]2 (7) exists as an anti-syn bridged acetate dimer. Complex 4 is four-coordinated, featuring a rare bidentate coordination mode of the TpMs∗ ligands. The results are rationalized in terms of the variable steric constraint around the zinc atom provided by the TpMs and TpMs∗ ligands.  相似文献   

19.
Reduction of RuQ3 (1a, Q = 8-quinolinolato) with Zn/Hg in the presence of various π-acceptor ligands in ethanol affords RuQ2L2 (L2 = (dimethylsulfoxide)2 (2); (4-picoline)2 (3); N,N′-dimethyl-1,4-diazabuta-1,3-diene, dab (4); cyclooctadiene, COD (5); norborna-2,5-diene, nbd (6)). Compound 6 is isolated as an equimolar mixture of cis,trans (6a) and trans,cis (6b) isomers, which can be separated by column chromatography. DFT calculations have been performed on 6a and 6b. Oxidation of 3 and 6b affords the corresponding ruthenium(III) species 7 and 8, respectively. The structures of 2, 3, 4 and 6 have been determined by X-ray crystallography.  相似文献   

20.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号