首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the new ligand bis(1-methyl-2-benzimidazolyl) propane (abbreviated as mtbz) several new copper(II) coordination compounds have been prepared and characterized structurally and spectroscopically. Two representative compounds, i.e. [Cu2(mtbz)2(CH3)2- (CF3SO3)](CF3SO3) (1) and [Cu2(mtbz)2(CH3O)2](ClO4)2 (4) were characterized structurally by X-ray diffraction. Crystal data for 1: monoclinic, space group P21/c, a=13.6585(5), B=39.981(3), C=20.919(1) Å, β=125.98(1)°, Z=8. Crystal data for 4: monoclinic, space group P21/c, a=13.115(2), B=9.523(2), C=17.908(4) Å, β=111.71(1)°, Z=2. Structures 1 and 4 each consist of a dinuclear unit with bridging methoxo groups and one ligand linked to each copper via an N atom. Structure 1 (which consists of two dinuclear, crystallographically independent, but chemically identical units) has the two copper atoms bridged by a triflate anion, providing each copper atom a square-pyramidal coordination, while the copper atoms in structure 4 have an almost a square-planar geometry. The Cu---Cu distances (Å) within the dinuclear units are: 1, 2.9775(13), 2.9751(13); 4, 2.9872(16); the Cu---O---Cu bridging angles (°) are: 1, 101.7(3), 101.7(3), 100.9(3), 102.1(3); 4, 103.2(2). The mid-IR section focused on the vibrations of the triflate anion reveals interesting results concerning the assignments of that anion related to the vas(S---O) band. Characteristic Cu---O vibrations in the far-IR section were found at 386 and 230 cm−1 for the methoxo-bridged and 454 and 332 cm−1 for the ethoxo-bridged compounds. These dinuclear species are EPR silent, and only a weak signal of monomeric impurities is observed. They also show a diamagnetic behavior below room temperature.  相似文献   

2.
A new series of dinuclear squarato-bridged nickel(II) and copper(II) complexes [Ni2(2,3,2-tet)21,3-C4O4)(H2O)2](ClO4)2 (1), [Ni2(aepn)21,3-C4O4)(H2O)2](ClO4)2 (2), [Cu2(pmedien)21,3-C4O4)(H2O)2](ClO4)2.4H2O (3) and [Cu2(DPA)21,2-C4O4)(H2O)2](ClO4)2 (4) where is the dianion of 3,4-dihydroxycyclobut-3-en-1,2-dione (squaric acid), 2,3,2-tet = 1,4,8,11-tetraazaundecane, aepn = N-(2-aminoethyl)-1,3-propanediamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine and DPA = di(2-pyridylmethyl)amine were synthesized and structurally characterized by X-ray crystallography. The spectral and structural characterization as well as the magnetic behaviour of these complexes is reported. In this series, structures consist of the groups as counter ions and the bridging the two M(II) centers in a μ-1,3- (1-3) and in a μ-1,2-bis(monodentate) (4) bonding fashions. The coordination geometry around the Ni(II) ions in 1 and 2 is six-coordinate with distorted octahedral environment achieved by N atoms of the amines and by one or two oxygen atoms from coordinated water molecules, respectively. In the Cu(II) complexes 3 and 4, a distorted square pyramidal geometry is achieved by the three N-atoms of the aepn or DPA and by an oxygen atom from a coordinated water molecule. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the M(II) centers. The complexes show weak antiferromagnetic coupling with ∣J∣ = 1.8-4.2 cm−1 in the μ-1,3- bridged squarato compounds 1-3, and J = −16.1 cm−1 in the corresponding μ-1,2- bridged squarato complex 4. The magnetic properties are discussed in relation to the structural data.  相似文献   

3.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

4.
The cobalt(II) complexes [Co(TPA)Cl]ClO4 (1), [Co(TPA)Br]ClO4 (2), [Co(TPA)(H2O)]Cl(ClO4) (3) and [Co2(TPA)2(μ-tp)](ClO4)2 · 2H2O (4) (TPA = tris(2-methylpyridyl)amine and tp = terephthalate dianion) were synthesized and structurally characterized by UV-vis and IR spectroscopy. The molecular structures of complexes 1 and 4 were determined by X-ray crystallography and their magnetic properties were measured over the temperature range 2-300 K. The coordination geometry around the central Co(II) in these compounds has a distorted trigonal bipyamidal geometry with four nitrogen atoms from the TPA ligand and the fifth coordination site is occupied by Cl ion in 1, Br ion in 2, coordinated oxygen atom from H2O in 3 and by an oxygen atom supplied by the carboxylate group of the bridged terephthalato ligand in 4. The visible spectra of the complexes 1-3 in MeOH show strong distortion toward tetrahedral geometry. For complex 4, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(monodentate) coordination mode for the bridged tp. X-ray data for 1 and 4 show that the former is mononuclear while the latter is dinuclear. The electronic spectrum of 4 in MeOH is in complete agreement with the assigned X-ray geometry around the Co(II) centers. The magnetic behavior of the mononuclear complex 1 is indicative of a high-spin compound with zero-field splitting. The best fit was obtained with ∣D∣ = 7.3 cm−1, g = 2.25. The dinuclear complex 4 exhibits weak antiferromagnetic coupling with a coupling constant J = −0.8 cm−1. The magnetic properties and the structural parameters of 4 are discussed in relation to the other related μ-terephthalato dinuclear Co(II) compounds. The geometry of the coordination sphere around 4 is unique - the CSD compilation listing only one other compound with such a geometry around the dinuclear Co(II) complex and its composition is far different from that in 4. However, they share a common feature of having a weakly antiferromagnetic coupling between Co(II) centers.  相似文献   

5.
The X-ray structure is reported for the complex Cu2(medpco-2H)Cl2, (medpco = N,N′-bis-N,N-dimethylaminoethyl)pyridine-2,6-dicarboxamide 1-oxide. The complex is triclinic, , a=8.313(4), B=11.403(5), C=11.611(3) Å, =91.66(3), β=108.99(4), γ=109.60(3)° and Z=2. The deprotonated ligand (medpco-2H)2− acts as a binulceating ligand, producing an N-oxide-bridged complex. Each copper in Cu2(medpco-2H)Cl2 is five-coordinate, being coordinated by a bridging N-oxide oxygen, a deprotonated amide nitrogen, a tertiary amine nitrogen and two bridging chlorides. The complex does not exhibit significant magnetic interaction, and this may be the result of distortion of the bridging geometry from planarity. A range of other, apparently N-oxide-bridged, complexes of the type Cu2(medpco-2H)X2 is reported. The complex Cu2(medpco-2H)Br2·H2O is strongly antiferromagnetic, with magnetic data closely fitting the expected binuclear structure.  相似文献   

6.
The first structurally characterised oxomolybdenum(V) complexes with thienyl carboxylate ligands were prepared by the reaction of [Mo2O3(C5H7O2)4] or (NH4)2[MoOCl5] with the corresponding acid (2-thiophenecarboxylic, 5-methyl-2-thiophenecarboxylic or 3-(3-thienyl)acrylic acid). Complexes [Mo2O3(μ-OC2H5)(μ-O2CR)(C5H7O2)2](R = -C4H3S (1), -C4H2S(CH3) (2) or -CHCHC4H3S (3)) were obtained upon substitution of two acetylacetonate ligands from [Mo2O3(C5H7O2)4] with RCOO in dry ethanol. Reactions of (NH4)2[MoOCl5] with the corresponding thienyl carboxylic acid in the presence of γ-picoline (C6H7N) yielded complexes (C6H7NH)[Mo2O4(μ-O2CR)Cl2(C6H7N)2] (R = -C4H3S (4), -C4H2S(CH3) (5) or -CHCHC4H3S (6)). All of the six new complexes were characterised as dinuclear. The molecular structures of 1, 3, 4·0.5CH3CN and 5 were determined by the single crystal X-ray diffraction method. In the complexes the two molybdenum atoms are doubly bridged either by one oxygen and one ethoxy-oxygen, or alternatively by two oxo-oxygens, and are additionally bridged by the thienyl carboxylate ion in a didentate bridging manner. All complexes were further characterised by means of chemical analysis, IR spectroscopy, TG and in some cases by the one and two-dimensional NMR method.  相似文献   

7.
The crystal structure, magnetic, redox and spectroscopic properties of a novel unsymmetrical dinuclear copper(II) complex, prepared by the reaction between copper(II) perchlorate, sodium acetate and the unsymmetrical, binucleating ligand HTPPNOL, where HTPPNOL is N,N,N′-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol, is reported. HTPPNOL (1 equiv.) reacted with 1 equiv. of copper(II) ion, in methanol, and produced the mononuclear copper complex [Cu(TPPNOL)](ClO4)(BPh4) (1). On the other hand, the reaction of 1 equiv. of HTPPNOL with 2 equiv. each of copper (II) ion and acetate, in methanol, produced the dinuclear complex [Cu2(TPPNOL)(OOCCH3)](ClO4)2 (2), whose structure has been determined by X-ray diffraction. In complex 2, as a result of the inherent asymmetry of the ligand HTPPNOL, one copper ion is five-coordinated (distorted trigonal-bipyramidal) while the other copper is four-coordinated (distorted square-planar). Then, as a result of the presence of distinct geometries for the metal centres, complex 2 exhibits a ferromagnetic coupling (J=+25.41 cm−1). Titration experiments carried out on the dinuclear complex suggest a pKa=8.0, which was related to the aquo/hydroxo equilibrium. Complex 2 is able to oxidise 3,5-di-tert-butylcatechol to the respective o-quinone. The oxidation reaction was studied by following the appearance of the quinone spectrophotometrically, at pH 8.0 and 25 °C.  相似文献   

8.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

9.
《Inorganica chimica acta》2004,357(12):3574-3582
The copper(II) complexes [Cu(PyTT)2(H2O)](NO3)2 (A) and [CuCl2(μ-PyTT)2CuCl(H2O)]Cl · 3H2O (B) were synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, UV-Vis-NIR diffuse reflectance and magnetic susceptibility measurements. In the mononuclear compound A the copper ion is in a distorted square pyramidal geometry, with the equatorial plane formed by two thiazoline nitrogen atoms, one imino nitrogen atom and one water molecule, whereas the axial site is occupied by one imino nitrogen atom. The compound B is dinuclear and both Cu(II) centres present environments that can be described as slightly distorted square pyramidal geometries. The observed molar magnetic susceptibility for A (μ=2.13 BM) allows to exclude metal-metal interactions, supporting a monomeric structural formulation for this compound. In compound B, magnetic susceptibility measurements in the temperature range 6.2-288 K show an intradimer antiferromagnetic interaction (J=−11.8 cm−1).  相似文献   

10.
Copper(I)/(II) complexes with the ligand 2-aminoethyl(2-pyridylmethyl)1,2-ethanediamine (apme, abbreviated as PDT in the literature as well) were prepared and characterized. Crystal structures of the copper(I) complexes, [Cu2(apme)2]X2 (1, 2; X = ClO4, CF3SO3), showed that they are dinuclear, in contrast to the trigonal bipyramidal copper(II) complexes [Cu(apme)Cl]BPh4 (3) and [Cu(apme)(DMF)](BPh4)2 (4). 1 and 2 could be investigated in solution by NMR spectroscopy and 3 and 4 by cyclovoltammetry. From the results of these studies it is clear that in solution equilibria between the dinuclear complexes 1/2 and another species exist, most likely the monomeric [Cu(apme)CH3CN]+. Time-resolved UV/vis spectra at low temperatures allowed the spectroscopic detection of dioxygen adduct complexes as reactive intermediates during the oxidation of 1/2 with dioxygen that seem to play an important role in copper enzymes such as peptidylglycine--hydroxylating monooxygenase (PHM).  相似文献   

11.
A dinuclear Mn(II) di(μ-hydroxo) complex having hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (=TpiPr2) reacted with benzoic acid to yield a dinuclear Mn(II) tri(μ-carboxylato) complex, TpiPr2Mn-(μ-OBz)3-Mn(TpiPr2H). X-ray crystallography reveals the unsymmetrical coordination environments for the manganese centers. One of the two TpiPr2 ligands, which bound to the five-coordinated Mn center, is protonated by the action of the third carboxylic acid and the resulting non-Mn-binding N–H moiety forms an intramolecular hydrogen bond with the oxygen donor of a carboxylate ligand. Steric congestion in the bimetallic core results in the large separation of the manganese centers bridged by the syn-anti carboxylate ligand.  相似文献   

12.
Reaction of the symmetrical proligand H2L with metal(II) acetate and a counteranion to promote crystallisation has given the homodinuclear complexes [Zn2L(OAc)2](BF4)]·2MeOH and [Ni2L(OAc)2](BF4)]·2MeOH the crystal structures of which are reported. These show the presence of a triply bridging (μ-cresolato)bis(μ-carboxylato) dimetal core.  相似文献   

13.
Herein, we report the syntheses, spectral and structural characterization, and magnetic behavior of four new dinuclear terephthalato-bridged copper(II) complexes with formulae [Cu2(trpn)2(μ-tp)](ClO4)2 · 2H2O (1), [Cu2(aepn)2(μ-tp)(ClO4)2] (2), [Cu2(Medpt)2(μ-tp)(H2O)2](ClO4)2 (3) and [Cu2(Et2dien)2(μ-tp)(H2O)](ClO4)2 (4) where tp = terephthalate dianion, trpn = tris(3-aminopropyl)-amin, aepn = N-(2-aminoethyl)-1,3-propanediamine, Medpt = 3,3′-diamino-N-methyldipropylmine and Et2dien = N,N-diethyldiethylenetriamine. The structures of these complexes consist of two μ-tp bridging Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry of the Cu(II) ions in these compounds may be described as close to square-based pyramid (SP) with severe significant distortion towards trigonal bipyramid (TBP) stereochemistry in 1. The visible spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, the solid infrared spectral data for the stretching frequencies of the tp-carboxalato groups, the ν(COO) reveals the existence of bis(monodentate) coordination mode for the bridged terephthalate ligand. The susceptibility measurements at variable temperature over the range 2-300 K are reported. Despite the same bonding mode of the tp bridging ligand, there has been observed slight antiferromagnetic coupling for the compounds 1 and 4 with J values of −0.5 and −2.9 cm3 K mol−1, respectively, and very weak ferromagnetic coupling for 2 and 3 with J values of 0.8 and 10.1 cm3 K mol−1, respectively. The magnetic results are discussed in relation to other related μ-terephthalato dinuclear Cu(II) published compounds.  相似文献   

14.
The first 1:2 metal complexes of 2-(2′-pyridyl)quinoxaline (L) have been isolated. The physical and spectroscopic characteristics of the compounds [MCl2L2] (M = Ni, Cu, Cd) and [CuIL2](PF6) are described. The structure of the copper(I) complex has been determined by X-ray diffraction methods. Crystals are orthorhombic, space group Pcnb with A = 11.014(2), B = 12.886(2), C = 17.806(4) Å, V = 2527.1(9) Å3 and Z = 4. Refinement of the structure gave a final R factor of 0.046 (Rw = 0.041) for 814 unique reflections having I > 2.0σ(I). The ligand L acts as a bidentate chelate, the ligated atoms being the pyridine nitrogen and the nearest quinoxaline nitrogen. The structure of [CuL2]+ consists of a distorted tetrahedral arrangement around the copper(I) atom with Cu---N bond lengths of 2.023(6) and 2.059(5) Å and the N---Cu---N angle of the chelating ligand equal to 80.6(2)°. A monomeric trans pseudo-octahedral stereochemistry is assigned for the [MCl2L2] complexes.  相似文献   

15.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

16.
The dinuclear dicarboxylato-bridged copper(II) complexes [Cu2(TPA)2(μ-tp)](ClO4)2 · H2O (1), [Cu2(TPA)2(μ-fum)](ClO4)2 · 2H2O (2) and [Cu2(pmedien)2(μ-fum)(H2O)2](ClO4)2 (3) (tp = terephthalate dianion, fum = fumarate dianion, TPA = tris(2-pyridylmethyl)amine and pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine) were synthesized and structurally characterized by X-ray crystallography. The structures of the TPA complexes 1 and 2 consist of μ-tp or μ-fum bridging two Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry around the Cu(II) ions in these compounds has a distorted trigonal bipyamidal geometry, TBP with four nitrogen atoms from the TPA ligand and a coordinated oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complex 3 has a distorted square pyramidal geometry achieved by the three N-atoms of the pmedien, one fum-carboxylate-oxygen and by an oxygen atom from a coordinated water molecule. The intradimer Cu…Cu distances in these complexes are 11.078(3), 8.663(4) and 9.520(3) Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(mondentate) coordination mode for the bridged dicarboxylato ligands in compounds 1 and 2. The susceptibility measurements at variable temperature over the 2-300 K range are reported. For 1-3, it has been observed slight antiferromagnetic coupling with J values of −0.8, −3.0 and −2.9 cm−1, respectively.  相似文献   

17.
Monobridged-dinuclear platinum(II) complexes, where the bridging ligand is 4,4′-dipyrazolylmethane, have been prepared for use as potential anticancer agents. The complexes synthesized include [{cis-PtCl2(NH3)}2(μ-dpzm)], [{trans-PtCl2(Me2SO)}2(μ-dpzm)] and [{cis-PtCl2(Me2SO)}2(μ-dpzm)]. The characterization of these complexes is based on microanalytical, IR and 1H NMR data.  相似文献   

18.
Trinuclear Cu(II)-pyrazolates of the general formula (Bu4N)2[Cu33-Cl)2(μ-4-R-pz)3Cl3] (pz=pyrazolato anion, R=Cl, Br, I, Me), 1-4, have been prepared and characterized by X-ray diffraction and/or 1H NMR, IR, UV-Vis spectroscopy and elemental analysis. Their structure and spectroscopic properties match the ones of the parent unsubstituted complex (Bu4N)2[Cu33-Cl)2(μ-pz)3Cl3], indicating that 4-substitution of the pyrazole ligands with halogen or methyl groups does not induce structural variation. In contrast, dinuclear complexes (Bu4N)4[Cu2(μ-3-Me-pz)2Cl4]Cl2 · 4H2O, Cu2(μ-Cl)(μ-3,5-Me2-pz)(3,5-Me2-pzH)4Cl2, Cu2(μ-Cl)(μ-OH)(3-Me-5-Ph-pzH)4Cl2 · 3-Me-5-Ph-pzH and Cu2(μ-Cl)2(3,5-Ph2-pzH)4Cl2, 5-8, have been prepared with 3- and 3,5-substituted pyrazoles by the same or similar synthetic protocols.  相似文献   

19.
The ligand N, N′-bis[2,2-dimethyl-4-(2-hydroxyphenyl)-3-aza-3-buten] oxamide with two identical coordination sites reacts with copper ions in its tetradeprotonated form to yield the dinuclear complex [Cu2(C24H26N4O4)]·H2O. The structure of this compound has been determined by the X-ray diffraction method. The crystals are orthorhombic with a = 11.744(1), B = 16.369(2), C = 26.340(3) Å, V = 5064(1) Å3, Z = 8, space group Pbca. The oxamide is in a trans conformation with two different environments for the copper centres, a (4 + 1) coordination mode for the first one and a square planar environment for the other one. The water molecule is not directly bound to a copper centre, but involved in hydrogen bonding with the two oxygen atoms of an N2O2 coordination site. Indeed, extra coordination comes from a phenolic oxygen atom belonging to an adjacent dinuclear unit. Static susceptibility measurements point to a strong intrapair antiferromagnetic exchange interaction of 2J = −520(±4) cm−1 and possibly an interpair ferromagnetic exchange interaction of 10(±5) cm−1.  相似文献   

20.
The tridentate ligand 2,6-bis(pyrazol-3-yl)pyridine (dPzPy) renders coordination compounds with halide, nitrate and tetrafluoroborate salts of copper. The complexes, which have the form [Cu(dPzPy)X2] with X=Br and Cl, [Cu(dPzPy)(NO3)2](H2O), and [Cu(dPzPy)2](BF4)(SiF6)0.5(MeOH)3 have been characterized by elemental analysis and by IR, EPR and ligand field spectroscopy. The single-crystal X-ray structure of [Cu(C11H9N5)Br2] shows the copper(II) ion to be coordinated by three N atoms of 2,6-bis(pyrazol-3-yl)pyridine and two bromides in a geometry exactly in between a trigonal-bipyramid and a square-pyramid. Each molecule lies on a crystallographic C2-symmetry axis. They are coupled to one another by a two-dimensional network through NH to Br hydrogen bonds. The crystal structure of [Cu(C11H9N5)Cl2] is analogous to the bromide. The single-crystal X-ray structure of [Cu(dPzPy)2](BF4)(SiF6)0.5(MeOH)3 shows the copper ion to be in a Jahn-Teller distorted octahedral N6 environment of two mer-oriented tridentate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号