首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystal X-ray structural characterizations are recorded for a number of adducts of MX:dpex (2:3) stoichiometry (MX = simple univalent copper or silver salt; dpex = Ph2E(CH2)xEPh2 (E = P, As)). CuX:dppe (2:3) (X = Cl, Br, I, CN) are binuclear [(dppe-P,P′)CuX(P-dppe-P′)CuX(P,P′-dppe)], all centrosymmetric. AgX:dpex (2:3) (dpex = ‘dpae’ (Ph2As(CH2)2AsPh2), X = Br, F3CCO2 (= ‘tfa’), F3CSO3 (≡ ‘tfs’); dpex = ‘dpape’ (Ph2As(CH2)2PPh2), X = CN, SCN, OClO3) are one-dimensional polymers ?-E′)1AgX(E-dpex-E′)2-AgX(E-dpex-E′)1AgX?, P, As sites scrambled in the latter. AgNO3:dpam (2:3) is also a one-dimensional polymer, ?AgO·NO·OAg(As-dpam-As)AgO·NO·OAg? (‘dpam’ ≡ Ph2As(CH2)2AsPh2). AgX:dpae (2:3) (X = I, CN, ClO4, NO3) and AgX:dpape (2:3) (X = Br, I, NO3) are two-dimensional polymers with large 30-membered macrocyclic rings; similar webs are found for dppx ligands in AgOH:dppb (2:3) and AgNCO, Agtfa:dpph (2:3) with 42- and 54-membered rings. Complexes AgX:dpape (1:3) (X = Cl, Br) are defined as mono-nuclear [XAg(Ph2P(CH2)2AsPh2)3] arrays, the unidentate ligands predominantly P-bound. Synthetic procedures for the adducts are reported, selected compounds being characterized both in solution (1H, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

2.
Single-crystal X-ray structural characterizations of MX:dpam (1:1) (‘dpam’ = Ph2AsCH2AsPh2) are reported for MX = AgCl, Br; CuI, CN/Cl (all isomorphous) and AgI, AgSCN, CuSCN arrays, all being of the novel form [(μ-X){M(μ-X)(As-dpam-As′)2M′}], essentially the familiar M(E-dpem-E′)2M′ binuclear array with both ‘bridging’ and (linking) ‘terminal’ (pseudo-)halides involved in the polymer. A different arrangement of bridging and linking entities is found with AgX:dpae (1:1)2(∞|∞), X = Br, NCO, ‘dpae’ = Ph2As(CH2)2AsPh2, now comprising [M(μ-X)2(As-dpae-As)M] kernels linked by As-dpae-As′, while in the thiocyanate analogue units are linked by the dpae ligands into a two-dimensional web. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

3.
The reactions of methyl 2-pyridyl ketone oxime, (py)C(Me)NOH, with MSO4 · xH2O (M = Zn, x = 7; M = Cd, x = 8/3), in the absence of an external base, have been investigated. The synthetic study has led to the two new complexes [Zn(SO4){(py)C(Me)NOH}(H2O)3] · H2O (1 · H2O) and [Zn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH [2 · (py)C(Me)NOH], and the coordination polymer [Cd(SO4){(py)C(Me)NOH}(H2O)]n · [Cd(SO4){(py)C(Me)NOH}(H2O)2]n (3). In the three complexes the organic ligand chelates through its nitrogen atoms. The sulfate anion in 1 · H2O is monodentate; the complex molecule is the mer isomer considering the positions of the aqua ligands. The ZnII centers in 2 · (py)C(Me)NOH are bridged by two syn, anti η112 ligands; each metal ion has the cis-cis-trans disposition of the coordinated sulfate oxygen, pyridyl nitrogen and oxime nitrogens, respectively. The molecular structure of 3 is unique consisting of two different linear and ladder - type chains. π-π stacking interactions and/or hydrogen bonds lead to the formation of interesting supramolecular architectures in the three complexes. The thermal decomposition of complex 3 has been studied. Characteristic vibrational (IR, Raman) bands are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

4.
Cobalt(III) and rhodium(III) complexes of the series of [MIIICl3 − n(P)3 + n]n+ (M = Co or Rh; n = 0, 1, 2 or 3) have been prepared with the use of 1,1,1-tris(dimethylphosphinomethyl)ethane (tdmme) and mono- or didentate phosphines. The single-crystal X-ray analyses of both series of complexes revealed that the M-P and M-Cl bond lengths were dependent primarily on the strong trans influence of the phosphines, and secondarily on the steric congestion around the metal center resulting from the coordination of several phosphine groups. In fact, the M-P(tdmme) bonds became longer in the order of [MCl3(tdmme)] < [MCl2(tdmme)(PMe3)]+ < [MCl(tdmme)(dmpe)]2+ (dmpe = 1,2-bis(dimethylphosphino)ethane) < [M(tdmme)2]3+ for both CoIII and RhIII series of complexes, while the M-Cl bond lengths were shortened in this order (except for [M(tdmme)2]3+). Such a steric congestion around the metal center can also account for the structural and spectroscopic characteristics of the series of complexes, [MCl(tdmme)(dmpm, dmpe or dmpp)]2+ (dmpm = bis(dimethylphosphino)methane, dmpp = 1,3-bis(dimethylphosphino)propane). The X-ray analysis for [CoCl(tdmme)(dmpm or dmpe)](BF4)2 showed that all Co-P bonds in the dmpm complex were shorter by 0.03-0.04 Å than those in the dmpe complex. Furthermore, the first d-d transition energy of the CoIII complexes and the 1JRh-P(tdmme) coupling constants observed for the RhIII complexes indicated an unusual order in the coordination bond strengths of the didentate diphosphines, i.e., dmpm > dmpe > dmpp.  相似文献   

5.
Yue Wang 《Inorganica chimica acta》2005,358(12):3407-3416
New ternary transition metal complexes of formulations [Co(bpa)(p-HB)2](bpa = 2,2′-bipyridylamine, p-HB = p-hydroxybenzenecarboxylic acid) (1), [Ni(bpa)(p-HB)(H2O)2]+(NO3) · H2O (2), , [Cu(bpa)(p-HB)Cl] (4) and [Zn(bpa)(p-HB)2]2 · 0.5H2O (5) are prepared, their structural features are characterized by crystal structural studies, and their DNA binding propensity has been evaluated by fluorescence method. The molecular structure of complex 1 shows the six coordinate octahedral geometry with one bpa and two p-HB ligands, complex 2 is the cationic complex and has the six coordinate octahedral structure with one bpa, one p-HB and two aqua ligands, complex 3 is also the cationic complex of octahedral coordination with two bpa and one p-HB ligands, complex 4 is five coordinate distorted square pyramidal with one bpa, one p-HB and chloride ligands and complex 5 has the distorted octahedral coordination with two p-HB and one bpa ligands. In all of the complexes, both bpa and p-HB act as the bidentate N and O-donor ligands, respectively. The intermolecular H-bond networks, together with π-π interaction in their solid state are also described. The complexes show the competitive inhibition of ethidium binding to DNA, and the DNA binding propensity can be reflected as the relative order: 3 > 2 > 1 > 5 > 4, in which the cationic charged Ni(II) complexes 2 and 3 show the most effective inhibition ability.  相似文献   

6.
Single crystal X-ray studies have defined the structures of a number of adducts of the form MX:dpex (2:1), M = univalent coinage metal (Cu, Ag), X = (pseudo-)halide, dpex = bis(diphenylpnicogeno)alkane, Ph2E(CH2)xEPh2, E = P, As, of diverse types, some novel. The adducts of AgCl,Br:dppm and AgNCO:dpem (x = 1) are tetranuclear as is the AgNO3:dppp (x = 3) array, all derivative of the familiar ‘step’ structure while the combination CuCN:dppm yields a two-dimensional web of twenty-membered macro/metallacycles. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

7.
The reaction of Re(CO)5Cl with o- or p-N-(nitrophenyl)ethylenediaminediacetic acid (H2L1, H2L2) and o- or p-N-(nitrophenyl)propylenediaminediacetic acid (H2L3, H2L4) in methanol leads to the formation of stable anionic [Et3NH][Re(CO)3(L)] · H2O complexes 1-4. These compounds have been characterized by means of IR, mass spectrometry, elemental analysis, NMR and conductimetry, as well as X-ray crystallography for 2 and 3. The [Re(CO)3]+ moiety is coordinated via the nitrogen of the iminodiacetic acid unit and two oxygens of monodentate carboxylate groups. In each case, the nitro group of the aromatic ring remains uncoordinated. The analogous technetium-99m complexes 1′ and 3′ were also prepared quantitatively by the reaction of H2L1 and H2L3, respectively, with the fac-[99mTc(CO)3(H2O)3]+ precursor in ethanol. The corresponding Re and 99mTc compounds were shown to possess the same structure by means of HPLC studies. The high affinity of these ligands for the Tc(I) or Re(I) core, coupled with the easiness of their derivatization (by reduction of the nitro group in amino group), implies that the utilization of this ligand system to develop target-specific radiopharmaceuticals for diagnosis and therapy is promising.  相似文献   

8.
The preparation and characterization of a series of deuterium-labelled (fulvene)M(CO)3 (M = Cr, Mo) complexes is reported. (η5-6-Dimethylaminofulvene-d2)Cr(CO)3 and (η5-6-dimethylaminofulvene-d2)Mo(CO)3 were obtained in high yields by reacting the deuterated fulvene ligands with (MeCN)3M(CO)3 (M = Cr, Mo). In addition, syntheses of 6,6-diphenylfulvene-d10 and 6,6-diphenyl-1,2-benzofulvene-d10 as well as the corresponding tricarbonylchromium complexes are described.  相似文献   

9.
Single crystal X-ray structural characterizations are recorded for a wide range of adducts of the form MX:dppx (1:1)(n), M = silver(I) (predominantly), copper(I), X = simple (pseudo-) halide or oxy-anion (the latter spanning, where accessible, perchlorate, nitrate, carboxylate - a range of increasing basicity), dppx=bis(diphenylphosphino)alkane, Ph2P(CH2)xPPh2, x = 3-6. Adducts are defined of two binuclear forms: (i) [LM(μ-X)2L], with each ligand chelating a single metal atom, and (ii) [M(μ-X)2(μ-(P-L-P′))2M′] where both ligands L and halides bridge the two metal atoms; a few adducts are defined as polymers, the ligands connecting M(μ-X)2M′ kernels, this motif persisting in all forms. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

10.
The reactions of metal(II) chlorides and bromides with 8-methylquinoline (8-mequin) in neutral and acidic solutions were investigated. The reaction with ZnCl2, ZnBr2, CoCl2, CoBr2, CuCl2 or CuBr2 with the appropriate HX in water or aqueous ethanol gave complexes of the formula (8-mequin)2MX4 (1, M = Cu, X = Cl; 2, M = Cu, X = Br; 3, M = Co, X = Cl; 4, M = Co, X = Br) or (8-mequin)2ZnX4·nH2O (5, X = Cl, n = 0; 6, X = Br, n = 0; 7, X = Cl, n = 1; 8, X = Br, n = 1). Crystals of 1, 2 and 4-8 suitable for single crystal X-ray diffraction were obtained and the structures reported. Compounds 1 and 2 crystallize in the monoclinic space group C2/c, while 4-8 crystallize in the triclinic space group, . Variable temperature magnetic susceptibility data indicate very weak interactions for the copper compounds 1 and 2, while the magnetic behavior of 3 and 4 is dominated by single ion anisotropy, with weaker antiferromagnetic interactions.  相似文献   

11.
Single crystal X-ray structural characterizations are recorded for an array of adducts of the form AgX:dppf (1:1)(n), X = simple (pseudo-)halide or oxy-anion, ‘dppf’ = bis(diphenyl phosphino)ferrocene, for adducts X = Cl (new phase), Br, I, SCN, OCN, CN, NO3 (new phase), O2CCH3, n = 2, the form being dimeric [(dppf-P,P′)Ag(μ-X)2Ag(P,P′-dppf)], for X = I, SCN, [Ag(μ-X)2(P-dppf-P′)2Ag′]; for X = O2CCF3, n = ∞, the form is an extended polymer: ?Ag(O · CO · CF3)(P-dppf-P′)Ag′(O?. A dichloromethane solvate phase of CuI:dppf (1:1)2 (also centrosymmetric) is also recorded. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR). The topology of the structures in the solid state was found to depend on the nature of the counterion.  相似文献   

12.
The hydrothermal reactions of MoO3, tetra-2-pyridylpyrazine (tpyprz) and M(CH3CO2)2 · 2H2O (M = Co, Ni) yielded the two-dimensional oxides [M2(tpyprz)(H2O)2Mo8O26] · xH2O [M = Co, x = 1.8 (1); M = Ni, x = 0.6 (2)]. However, the reaction of (NH4)6Mo7O24 · 4H2O, tpyprz and Cu(CH3CO2)2 · H2O produced [{Cu2(tpyprz)}2Mo8O26] · 2H2O (3 · 2H2O). The isomorphous structures of 1 and 2 are constructed from clusters linked through {M2(tpyprz)(H2O)2}4+ subunits into two-dimensional networks. While the structure of 3 is also two-dimensional, the molybdate building block is present as the δ-isomer and the secondary-metal/ligand component consists of a one-dimensional chain. The structure of 3 is compared to that of the previously reported three-dimensional material [{Cu2(tpyprz)}2Mo8O26] · 7H2O which contains clusters and structurally distinct chains.  相似文献   

13.
The syntheses, characterization, and single-crystal X-ray crystal structures are reported for four complexes of iron and cobalt with the pentadentate ligands, 2,6-diacetylpyridinebis(thiosemicarbazone) (H2L1) and 2,6-diacetylpyridinebis(phenylthiosemicarbazone) (H2L2), including a cobalt dimer displaying a deviation from planarity which is unprecedented for this class of ligands and allows the ligand to occupy five positions of a pseudo-octahedral coordination sphere. This dimer reacts with KCN to produce a mononuclear complex of relevance to the active site of cobalt nitrile hydratase.  相似文献   

14.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

15.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

16.
The first chiral bis(pyridine) N-C(H)-N pincer ligand, (5S,7S)-1,3-bis(6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanquinolin-2-yl)benzene (HL) has been synthesized and characterized by a thorough 1H NMR analysis. Reaction of HL with K2[PtCl4] in acetic acid gives [Pt(L)Cl] (1), where L acts as a tridentate N-C-N pincer ligand. The analogous palladium(II) derivatives [Pd(L)Cl] (2), and [Pd(L)(OAc)] (3), were first prepared through a transmetalation reaction between Pd(OAc)2 and the organomercury compound [Hg(L)Cl] (4). The structures of compounds 1 (Pt) and 2 (Pd), as determined by X-ray diffraction, are reported and compared. Compound 2 can also be obtained from Na2[PdCl4] and HL in refluxing acetic acid, i.e., under the same conditions used for compound 1. Apparently, this is the first palladium pincer derivative of a 1,3-bis(pyridyl)benzene ligand synthesized by direct C-H activation.The neutral complexes 1-3 are catalysts of modest activity, but devoid of enantioselectivity in the Heck reaction between iodobenzene and methyl acrylate and in the aldol condensation of benzaldehyde with methyl isocyanoacetate.  相似文献   

17.
Assembly of isonicotinic acid ligand (HL) with metal halide, five new hybrid complexes [CdI2(C5H4NCOOH)(C5H4NHCOO)] · H2O (1), Nan[ZnCl2(C5H4NCOO)]n · 2nH2O (2), [CdX(C5H4NCOO)]n (X = Br (3), I (4)) and [Cd3Cl2(OH)2(C5H4NCOO)2]n (5) were obtained, which display a variety of structural motifs, ranging from zero-dimensional to complicated three-dimensional networks. Complex 1 possesses an isolated unit MX2 that is further connected into 3D networks through hydrogen bonding and π-π stacking interactions. Complex 2 is characterized by an infinite one-dimensional chain of zinc atoms bridged by L ligands. While complexes 3 and 4 possess X-bridging 1[CdX2/2] inorganic chains connected by L ligands to form a 2D hybrid network structure. In the case of 5, the cadmium(II) cation is bridged by μ3-Cl atom and μ3-OH group to form a 2-D 2[Cd6/2Cl6/33-OH)2] inorganic layer which is further extended into 3-D framework by bridging L ligand via Cd-N and Cd-O bonds. The optical properties of 1, 4, and 5 in the solid state are investigated at room temperature and time-dependent DFT (TDDFT) calculation using the B3LYP functional has been performed on 1. The result indicated that the emission band of 1 is attributed to an admixture of MLCT (metal-to-ligand charge-transfer) and LLCT (ligand-to-ligand charge-transfer).  相似文献   

18.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

19.
Three novel hexa-transition-metal complexes substituted tungstoarsenates, [Ni6(imi)6(B-α-H3AsW9O33)2]·2H2O (1), [Zn6(imi)6(B-α-H3AsW9O33)2]·2H2O (2) and [Mn6(imi)6(B-α-H3AsW9O33)2]·4H2O (3) (imi = imidazole), have been synthesized hydrothermally without using any polyoxoanion as precursor and characterized by elemental analyses, IR, TG and X-ray single-crystal diffraction. Compounds 1-3 are isostructural, composed of [B-α-H3AsW9O33]12− anions and [M6(imi)6]12+ complex cations (M = Ni, Zn and Mn), all M atoms are square pyramidal geometry, and held together to form hexagonal metallocycles by edge-sharing oxygen atoms. In compounds 2 and 3, [M6(imi)6(B-α-AsW9O33)2] (M = Zn, Mn) segments act as 12-connected nodes to form complicated 3D network via hydrogen-bonding interactions, respectively. Magnetic measurements for 1 show the presence of ferromagnetic interactions within the hexanuclear Ni2+ cations.  相似文献   

20.
The interactions of monofunctional [MCl(chelate)] compounds (M = Pt(II), Pd(II) or Au(III) and chelate = diethylenetriamine, dien or 2,2′,2″-terpyridine, terpy) with the C-terminal finger of the HIV nucleocapsid NCp7 zinc finger (ZF) were studied by mass spectrometry and circular dichroism spectroscopy. In the case of [M(dien)] species, Pt(II) and Pd(II) behaved in a similar fashion with evidence of adducts caused by displacement of Pt-Cl or Pd-Cl by zinc-bound thiolate. Labilization, presumably under the influence of the strong trans influence of thiolate, resulted in loss of ligand (dien) as well as zinc ejection and formation of species with only Pd(II) or Pt(II) bound to the finger. For both Au(III) compounds the reactions were very fast and only “gold fingers” with no ancillary ligands were observed. For all terpyridine compounds ligand scrambling and metal exchange occurred with formation of [Zn(terpy)]2+. The results conform well to those proposed from the study of model Zn compounds such as N,N′-bis(2-mercapto-ethyl)-1,4-diazacycloheptanezinc(II), [Zn(bme-dach)]2. The possible structures of the adducts formed are discussed and, for Pt(II) and Pd(II), the evidence for possible expansion of the zinc coordination sphere from four- to five-coordinate is discussed. This observation reinforces the possibility of change in geometry for zinc in biology, even in common “structural” sites in metalloenzymes. The results further show that the extent and rate of zinc displacement by inorganic compounds can be modulated by the nature (metal, ligands) of the reacting compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号