首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex formation between iron(III) and bromide has been studied calorimetrically in N,N′-dimethylpropyleneurea (DMPU), and the structure of the DMPU solvated tribromoiron(III) complex has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS), and in solid state by EXAFS and single crystal X-ray diffraction. The calorimetric study showed that iron(III) forms three medium strong bromide complexes in DMPU, and the thermodynamic pattern strongly indicates that all complexes are formed in entropy driven substitution reactions. In DMPU solution, the tribromoiron(III) complex has a regular trigonal planar configuration with a mean Fe-Br bond distance of 2.36 Å, and without any solvent molecules strongly bound to iron(III). In the solid state, however, the structure is a slightly distorted trigonal bipyramid, with one short and two slightly longer Fe-Br bonds, 2.37 and 2.44 Å, respectively, in a somewhat distorted trigonal plane, and two DMPU solvent molecules (mean Fe-O bond distance 1.98 Å) in the apical positions. The DMPU solution of iron(III) bromide and the [FeBr3(dmpu)2] crystals are both blackish red.  相似文献   

2.
The structures of the N,N′-dimethylpropyleneurea (DMPU) solvated gallium(III) and indium(III) ions have been determined in DMPU solution by means of EXAFS. The gallium(III) ion is five-coordinate with a mean Ga-O bond distance of 1.924(5) Å, while the larger indium(III) ion is octahedrally coordinated with a mean In-O bond distance of 2.146(3) Å. The complex formation equilibria in DMPU for the gallium(III) and indium(III) bromide systems have been studied calorimetrically at 298 K. Three relatively strong complexes are formed in the indium(III) bromide system in DMPU, whereas no stability constants could be established in the gallium(III) bromide system as the heats of complex formation were very close to zero. Gallium(III) bromide is present as DMPU solvated GaBr3 complexes in solution with three equatorial Ga-Br bonds at 2.328(3) Å, and two Ga-O bonds at 1.92(3) Å in the apical positions of a distorted trigonal bipyramid. The DMPU solvated indium(III) bromide has the same configuration with a mean In-Br bond distance of 2.510(3) Å, and two In-O bonds at 2.201(6) Å. Indium(III) binds three bromides and three Me2SO molecules through the oxygen atoms in octahedral fac-configuration with mean In-Br and In-O bond distances of 2.630(3) and 2.211(15) Å, respectively.  相似文献   

3.
The structure of the N,N-dimethylthioformamide (DMTF) solvated gallium(III) ion has been determined in solution by means of extended X-ray absorption fine structure (EXAFS) spectroscopy. The gallium(III) ion is four-coordinate in tetrahedral fashion with a mean Ga-S bond distance of 2.233(2) Å in DMTF solution. At the dissolution of indium(III) perchlorate or trifluoromethanesulfonate in DMTF coordinated solvent molecules are partly reduced to sulfide ions, and a tetrameric complex with the composition [In4S4(SHN(CH3)2)12]4+ is formed. The structure of the solid tetrameric complex in the perchlorate salt was solved with single crystal X-ray diffraction. Four indium(III) ions and four sulfide ions form a highly symmetric heterocubane structure where each indium binds three bridging sulfide ions and each sulfide ion binds three indium(III) ions with a mean In-S bond distance of 2.584(1) Å, and S-In-S angles of 90.3(1)°. Each indium(III) additionally binds three DMTF molecules at significantly longer mean In-S bond distance, 2.703(1) Å; the S-In-S angles are in the range 80.3-90.4°. Large angle X-ray scattering data on a DMTF solution of indium(III) trifluoromethanesulfonate show that the same tetrameric species characterized in the solid state is also present in solution, whereas the EXAFS measurements only give information about the In-S bond distances due to the short core hole lifetime.  相似文献   

4.
The iron(II) compound of formula [Fe(NCS)2(dena)2]n (dena = N,N′-diethylnicotinamide) has been prepared by the reaction between iron(III) thiocyanate and dena in ethanol solution. The complex was characterized by elemental analysis, spectral and magnetic measurements. Single-crystal X-ray diffraction methods show that the complex, crystallizing in the triclinic space group, undergoes a phase transition between 220 K and 230 K, connected with the doubling of cell volume. Crystal structures at 230 K (1a; HT phase) and 150 K (1b; LT phase) are described and a transition mechanism is discussed. In both phases the compound has an extended chain structure, in which the neutral molecule of N,N′-diethylnicotinamide acts as a bridging ligand binding through pyridine N atom to one centre and through amide O atom to the neighbouring Fe centre. The Fe2+ ion has a slightly distorted trans-octahedral environment with FeO2N4 chromophore, and all Fe-O and Fe-N bonds in the typical for high-spin iron(II) compounds range. Variable-temperature magnetic susceptibility data in the temperature range 1.8-300 K show that iron(II) is high-spin S = 2(5T2g) and as a result effects due to zero-field splitting are anticipated at low temperatures. The IR spectrum suggested the coordination of N,N′-diethylnicotinamide to the central atom of iron(II) as a bridging ligand and NCS group as a monodentate ligand.  相似文献   

5.
Two low-spin Fe(III) dicyano-dicarboxamido complexes have been prepared from N,N-bis(8-quinolyl)malonamide derivatives. Crystal structures show that the four nitrogen donors available to complex the metal are arranged in the equatorial plane with the two cyanides trans to each other in the axial positions when the malonyl moiety is disubstituted. In contrast, the unsubstituted malonyl results in only three nitrogens in the equatorial plane with the fourth in an apical position and the two cyanides occupying cis sites, one equatorial and the other axial. NMR analyses show that the solid state structure of both complexes is retained in solution. Both types of configurational complexes catalyze cyclic olefin oxidations with H2O2 but only the cis-dicyano complex catalyzes stilbene oxidation with formation of epoxides, diols and benzaldehyde.  相似文献   

6.
The new N,N,O heteroscorpionate ligand 3,3-bis(1-vinylimidazol-2-yl)propionic acid (Hbvip) (5) was synthesised in five steps starting from 1-vinylimidazole. This ligand is closely related to 3,3-bis(1-methylimidazol-2-yl)propionic acid (Hbmip), but contains two vinyl linker groups which can be used for radical-induced polymerisation reactions. The κ3-N,N,O coordination behaviour of 5 was proven by the synthesis of the tricarbonyl complexes [Re(bvip)(CO)3] (6), [Mn(bvip)(CO)3] (7) and [Cu(bvip)2] (8). To obtain good yields of 6, it was synthesised in water instead of THF. The ligand as well as all three complexes were characterised by X-ray crystallography. Copolymerisation of 5 with pure methyl methacrylate (MMA) or a combination of MMA and ethylene glycol dimethacrylate (EGDMA) led to the solid phases P1 and P2. Polymer-bound rhenium and manganese tricarbonyl complexes could be obtained by the reaction of deprotonated P1 with [MBr(CO)5] (M = Re, Mn) and also by copolymerisation of 6 and 7 with MMA. In both cases, the facial tripodal binding behaviour was evidenced by IR spectra of the polymers. Furthermore, the content of metal incorporated in the polymers was determined by elemental analysis, AAS or ICP-OES measurements. Reaction of the deprotonated solid phase P1 with copper(II) chloride led to a blue solid-phase (P1-Cu). The UV-Vis absorption maximum of P1-Cu is found at 615 nm, which is almost identical to that found for 8. Thereby, it seems likely that P1 is flexible enough to form bisligand complexes with copper(II). This means that the copper centres act as a kind of crosslinking agents. In contrast, the heterogeneous reaction of P2 with copper(II) chloride yielded a lime green solid phase (P2-Cu). The bathochromic shift of the absorption maximum by 102 nm suggests one-sided bound copper centres.  相似文献   

7.
Chemical implantation of Group 4 cations [Ti(III), Ti(IV), Zr(IV), Hf(IV)] has been carried out under mild conditions by the reaction of polycyclopentadienyl- (MCpn; M = Ti, n = 3, 4; M = Zr, Hf, n = 4), mixed cyclopentadienyl/N,N-dialkylcarbamato (MLx(O2CNEt2)y; M = Ti, L = Cp, C5Me5 (Cp*), x = 2, y = 1; M = Hf, L = Cp, x = 1, y = 3), and N,N-dialkylcarbamato (M(O2CNR2)n, M = Ti, n = 3, R = iPr; M = Ti, Hf, n = 4, R = Et; M = Zr, n = 4, R = iPr) derivatives, with the silanol groups of amorphous silica. Cyclopentadiene/pentamethylcyclopentadiene and/or carbon dioxide and the secondary amine are released in the process. The amount of implanted cations depends on the metal and on the ligands, the pentamethylcyclopentadienyl complex being less reactive than the unsubstituted congener. The starting complexes and the final products have been characterized by EPR or by 13C CP-MAS NMR spectroscopy.  相似文献   

8.
The iron(III) complexes of the tridentate N3 ligands pyrazol-1-ylmethyl(pyrid-2-ylmethyl)amine (L1), 3,5-dimethylpyrazol-1-ylmethyl(pyrid-2-ylmethyl)amine (L2), 3-iso-propylpyrazol-1-ylmethyl(pyrid-2-ylmethyl)amine (L3) and (1-methyl-1H-imidazol-2-ylmethyl)pyrid-2-ylmethylamine (L4) have been isolated and studied as functional models for catechol dioxygenases. They have been characterized by elemental analysis and spectral and electrochemical methods. The X-ray crystal structure of the complex [Fe(L1)Cl3] 1 has been successfully determined. The complex possesses a distorted octahedral coordination geometry in which the tridentate ligand facially engages iron(III) and the Cl ions occupy the remaining coordination sites. The Fe-Npz bond distance (2.126(5) Å) is shorter than the Fe-Npy bond (2.199(5) Å). The systematic variation in the ligand donor substituent significantly influences the Lewis acidity of the iron(III) center and hence the interaction of the present complexes with a series of catechols. The catecholate adducts [Fe(L)(DBC)Cl], where H2DBC = 3,5-di-tert-butylcatechol, have been generated in situ and their spectral and redox properties and dioxygenase activities have been studied in N,N-dimethylformamide solution. The adducts [Fe(L)(DBC)Cl] undergo cleavage of DBC2− in the presence of dioxygen to afford major amounts of intradiol and smaller amounts extradiol cleavage products. In dichloromethane solution the [Fe(L)(DBC)Cl] adducts afford higher amounts of extradiol products (64.1-22.2%; extradiol-to-intradiol product selectivity E/I, 2.6:1-4.5:1) than in DMF (2.5-6.6%; E/I, 0.1:1-0.4:1). The results are in line with the recent understanding of the function of intra- and extradiol-cleaving catechol dioxygenases.  相似文献   

9.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

10.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

11.
We report the synthesis and characterization of a seven coordinate europium complex, [EuCl3(C10H8N2O2) ·  2CH3OH]. The growing interest in developing efficient light conversion molecular devices (LCMDs) necessitates the need for new fluorescent materials. Ideal physicochemical properties of the materials include ligand absorption, efficient metal to ligand transfer, and strong luminescence with a relatively long decay time. The design of such material requires distinct absorbing (ligand) and emitting (metal ion) components. While Eu3+ cation has a non-degenerate emitting level, 2,2′-bipyridine N,N dioxide is a heterocyclic ligand known to exhibit strong luminescence. Additional characterization is also described, including single crystal X-ray diffraction, IR and UV-Vis spectroscopies and elemental analysis.  相似文献   

12.
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between mS = ± 1/2 (geff ~ 9) or mS = ± 3/2 (geff ~ 4.3) states. Mössbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H37Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the “second-line” therapeutic drugs.  相似文献   

13.
Two new iron(II) five-coordinated porphyrin complexes [Na(2,2,2-crypt)] [FeII(TpivPP)(NCO)] (1) (TpivPP = α,α,α,α-tetrakis(o-pivalamidophenyl) porphyrin known as picket fence porphyrin and 2,2,2-crypt is the cryptand-222) and [K(2,2,2-crypt)][FeII(TpivPP)(NCS)] (2) have been prepared and characterized. The UV-Vis and IR spectroscopic data are consistent with a cyanato-N and thiocyanato-N ferrous porphyrinates. The Mössbauer data and the X-ray structural analysis indicate that the Fe(II) cation in 1 and 2 is high-spin (S = 2) and has the (dxy)2(dxz)1(dyz)1(dz2)1(dx2-y2)1 ground state electronic configuration.For complex 1, the average equatorial iron-pyrrole N bond length (Fe-Np = 2.120(2) Å), the distance between the iron and the 24-atom mean plane of the porphyrin ring (Fe-PC = 0.6805(7) Å) and the distance between the iron and the plane made by the four pyrrole nitrogens (Fe-PN = 0.5923(12) Å) are longer than those of complex 2 and similar five-coordinated Fe(II) high-spin porphyrinates. This is probably due to the significant electronic repulsion of the dx2-y2 and dxy orbitals by the negative charge of the pyrrole N atoms in case of 1.  相似文献   

14.
Two novel monomeric [C18H17Cl3N2O2Fe] (1) and dimeric [C38H36N4O4Cl6Fe2] (2) Fe(III) tetradentate Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. In complex (1) the Schiff base ligand coordinates toward one iron atom in a tetradentate mode and each iron atom is five coordinated with the coordination geometry around iron atom which can be described as a distorted square pyramid. The presence of a short (2.89 Å) non-bonding interatomic Fe···O distances between adjacent monomeric Fe(III) complexes results in the formation of a dimer. Structural analysis of compound (2) shows that the structure is a centrosymmetric dimer in which the six coordinated Fe(III) atoms are linked by μ-phenoxo bridges from one of the phenolic oxygen atoms of each Schiff base ligand to the opposite metal center. The variable-temperature (2-300 K) magnetic susceptibility (χ) data of these two compounds have been investigated. The results show that for both complexes Fe(III) centers are in the high spin configuration (S = 5/2) and indicate antiferromagnetic spin-exchange interaction between Fe(III) ions. The obtained results are briefly discussed using magnetostructural correlations developed for other class of iron(III) complexes.  相似文献   

15.
In this work, we present the synthesis and characterization of three mononuclear iron(III) complexes: dichloro[N-propanamide-N,N-bis-(2-pyridylmethyl)amine]iron(III) perchlorate (1), trichloro[N-methylpropanoate-N,N-bis-(2-pyridylmethyl)amine]iron(III) (2) and trichloro[bis-(2-pyridylmethyl)amine]iron(III) (3). The complexes were characterized by cyclic voltammetry, conductivimetry, elemental analyses, and by electronic, infrared and Mössbauer spectroscopies. Complex 1 was also characterized by X-ray structural analysis, which showed an iron center coordinated to one amide, one tertiary amine, two pyridine groups and two chloride ions. While for 1 the X-ray molecular structure and the infrared spectrum confirm the coordination of the amide group by the oxygen atom, the infrared spectrum of 2 indicates that the ester group present in the ligand is not coordinated, resulting in a N3Cl3 donor set, similar to the one present in 3. However, in 3 there is a secondary amine while in 2 a tertiary amine exists. These structural differences result in distinguishable variations in the Lewis acidity of the iron center, which could be evaluated by the analysis of the redox potential of the complexes, as well as by Mössbauer parameters. Thus, the Lewis acidity decreases in the following order: 1 > 2 > 3. It is important to notice that 1 has the amide group coordinated to the iron center, a feature present in metalloenzymes as lipoxygenase and isopenicillin N synthase, and in a small number of mononuclear iron(III) complexes.  相似文献   

16.
Synthesis, physical properties and X-ray structure of a hydrated tetranuclear copper(II) complex [Cu4(μ-diph)2(μ-H2O)2(O2CCH3)4(H2O)2]·4H2O with N,N′-bis(picolinoyl)hydrazine (H2diph) are reported. The centrosymmetric complex has two types of copper(II) centres with distorted square-pyramidal N2O3 coordination spheres. The dinucleating trans planar diph2− ligands are parallel to each other and act as N2O-donor to one metal centre and N2-donor to the other metal centre. The complex has a rectangular {Cu4(μ-N-N)2(μ-OH2)2} core with Cu···Cu distances as 4.834(1) and 3.762(1) Å. Solid state as well as solution electronic spectra show several transitions in the wavelength range 700-280 nm. The room temperature (298 K) solid state magnetic moment is 3.55 μB. The powder EPR spectra at 298 and 130 K are very similar and axial (g = 2.25 and g = 2.08) in character.  相似文献   

17.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

18.
The structure of the solvated mercury(I) ion in solvents such as water, methanol, dimethylsulfoxide, N,N-dimethylpropyleneurea, acetonitrile and pyridine solution has been studied by means of EXAFS and/or large angle X-ray scattering (LAXS). Raman spectroscopy has been used for the determination of the Hg-Hg stretching frequencies. The Hg-Hg bond length increases with increasing solvating ability of the solvent, while the stretching frequency appears to be almost invariant. The results of quantum chemical calculations indicate a significant influence on the Hg-Hg bond from solvation. The structure of solid anhydrous mercury(I) trifluoromethanesulfonate, Hg2(CF3SO3)2 (1), has been determined by powder diffraction methods. The structure comprises of discrete molecules, where each mercury binds to an oxygen atom in the anion, forming an almost linear O-Hg-Hg-O entity; the Hg-Hg-O angle is 173° and the Hg-Hg and Hg-O bond lengths are 2.486(6) and 2.099(22) Å, respectively.  相似文献   

19.
Cobalt involvement in chemical and metallobiological processes entails largely unknown reactivity pathways with a variety of ligands. Such ligands include phosphonate and carboxylate-containing metal ion binders. In an attempt to investigate the nature and properties of species arising from aqueous interactions between Co(II) and N,N-bis(phosphonomethyl)-glycine (H5NTA2P), reactions between the two led to an assembly of species in (NH4)4[Co(H2O)6][(H2O)2Co(HNTA2P)Co(NH3)2(H2O)3]2[Co(NTA2P)(H2O)2]2 · 10H2O · 1.36CH3CH2OH (1) at pH ∼ 5.5. The analytical, spectroscopic and X-ray data on 1 reveal mononuclear and dinuclear complexes of Co(II) surrounded by oxygens, belonging to terminal carboxylates, phosphonates and bound water molecules, and nitrogen atoms from coordinated ammonia and HxNTA2Pq (x = 1, q = 4; x = 0, q = 5) ligands. Worth noting is the variable protonation state of the bound diphosphonate ligand and its ability to bridge two Co(II) centers with ostensibly differing coordination spheres. The assembly of three Co(II) species of variable nuclearity and composition attests to the importance of pH-specific conditions, under which “capturing” of more than one species can be achieved for a given Co(II):H5NTA2P stoichiometry in the presence of ammonia. Collectively, 1 provides a rare glimpse of a “slice” of the aqueous speciation of the binary Co(II)-H5NTA2P system, while its lattice composition projects key structural features in Co(II)-carboxyphosphonate materials.  相似文献   

20.
The reactions of [PtMe3(OAc)(bpy)] (4) with the N,S and S,S containing heterocycles, pyrimidine-2-thione (pymtH), pyridine-2-thione (pytH), thiazoline-2-thione (tztH) and thiophene-2-thiol (tptH), resulted in the formation of the monomeric complexes [PtMe3(-κS)(bpy)] ( = pymt, 5; pyt, 6; tzt, 7; tpt, 8), where the heterocyclic ligand is coordinated via the exocyclic sulfur atom. In contrast, in the reactions of [PtMe3(OAc)(Me2CO)x] (3, x = 1 or 2) with pymtH, pytH, tztH and tptH dimeric complexes [{PtMe3(μ-)}2] (μ- = pymt, 9; pyt, 10; tzt, 11) and the tetrameric complex [{PtMe33-tpt-κS)}4] (12), respectively, were formed. The complexes were characterized by microanalyses, 1H and 13C NMR spectroscopy and negative ESI-MS (12) measurements. Single-crystal X-ray diffraction analysis of [PtMe3(pymt-κS)(bpy)] (5) exhibited a conformation where the pymt ligand lies nearly perpendicular to the complex plane above the bpy ligand that was also confirmed by quantum chemical calculations on the DFT level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号