首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three dimensional supramolecular network, {[Co(bpee)(H2O)4] · (tp) · 2(H2O)}n (1) [bpee = trans-1,2 bis(4-pyridyl)ethylene; tp = terephthalate dianion] has been synthesized and characterized by X-ray single crystal structure, magnetic measurement and thermal analysis. The structure determination reveals that the cobalt(II) ions, bridged by bpee and coordinated by four water molecules, give rise to covalently linked 1D polymeric chain. The parallel chains get involved in H-bonding with tp resulting in a 3D architecture. Upon heating 1, which is pink in color, transforms to [Co(bpee)(tp)] (1a, blue). The deaquated species (1a) reverts on keeping in humid atmosphere. Low temperature magnetic data indicate weak antiferromagnetic coupling.  相似文献   

2.
New copper(II) clofibriates (clof, {2-(4-chlorophenoxy)-2-methylpropionic or 2-(4-chlorophenoxy)isobutyric acid}) of composition Cu(clof)2L2 (where L=2-pyridylmethanol (2-pymeth) (1), N-methylnicotinamide (Menia) (4), N,N-diethylnicotinamide (Et2nia) (5), isonicotinamide (isonia) (7) or methyl-3-pyridylcarbamate (mpc) (8)), [Cu(clof)2(4-pymeth)2(H2O)] · 2H2O (4-pymeth=4-pyridylmethanol) (2 · 2H2O) and Cu(clof)2L (where L=4-pymeth (3) or Et2nia (6)) have been prepared and spectroscopically characterized. All the Cu(clof)2L2 compounds seem to possess distorted octahedral copper(II) stereochemistry with differing tetragonal distortions. An X-ray analysis of 1 was carried out and it featured a tetragonal-bipyramidal geometry around the copper(II) atom. X-ray analysis of 2 · 2H2O featured a square-pyramidal geometry around copper(II) atom. Both the Cu(clof)2L compounds seem to consist of a binuclear unit of tetracarboxylate type bridging. An X-ray analysis of 6 revealed typical binuclear paddle-wheel type structure, consisting of two copper(II) atoms in square-pyramidal geometry bridged by four carboxylate anions in the xy-plane. All complexes under study were characterized by EPR and electronic spectroscopy. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

3.
Three new one-dimensional (1-D) chain metal-nitroxide complexes of the formula [M(NIT4Py)2(e,e-trans-1,4-chdc)(H2O)2]n (M = Co(II) 1, Ni(II) 2 and Zn(II) 3; NIT4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and 1,4-chdc = 1,4-cyclohexanedicarboxylate dianion) have been synthesized and characterized structurally as well as magnetically. The X-ray crystal structure analyses of complexes 1, 2 and 3 reveal that they are isostructural. Three complexes all crystallize in neutral 1-D chains where metal-nitroxide units [M(NIT4Py)2(H2O)2] are linked by the linear 1,4-cyclohexanedicarboxylate dianion. The 1,4-chdc completes the segregation and only possesses the e,e-trans-conformation, although there are both cis- and trans-isomers in the raw material. The magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the metal ions and the nitroxides.  相似文献   

4.
The supramolecular structural diversities in mixed ligand systems derived from a series of dicarboxylate anions with varying chain lengths and N-donor exo-bidentate ligand equipped with hydrogen bonding capable amide backbone with Co(II)/Zn(II) metal centers are analyzed. In this context, two complexes namely (Co(L1)2(malonate)(H2O)2} (1a), {Zn(L1)2(malonate)(H2O)2} (1b) and one coordination polymer namely {[Co(μ-L1)(μ-glutarate)(H2O)] · H2O}n (4) (where L1 = N-(4-pyridyl)nicotinamide) have been synthesized and crystallographically characterized. The main aim of this work is to explore the effects of chain lengths of the anionic carboxylate ligands such as malonate, succinate, maleate, and glutarate, in determining the final architecture of coordination compounds based on the mixed ligands. Analyses of the structures revealed that the length of the bridging ligands have prominent effect in the formation of hierarchical structures.  相似文献   

5.
Three novel oxamido-bridged heterobinuclear copper(II)-nickel(II) complexes derived from macrocylic oxamido compound with diamines and tetraazacyclam as blocking ligands were synthesized and characterized by IR, ESR and electronic spectra. Their formula is [Cu(L)Ni(en)2](ClO4)2·0.5C2H5OH·H2O (1), [Cu(L)Ni(tmd)2](ClO4)2·4H2O (2) and [Cu(L)Ni(rac-cth)](ClO4)2·CH3OH (3), where L=1,4,8,11-tetraazacyclotradecanne-2,3-dione, en=1,2-diaminoethande, tmd=1,3-diaminopropane and rac-cth is rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of the three complexes have been determined. The structures consist of binuclear units in which the copper(II) ion is in a square-planar environment and linked to the nickel(II) ion via the exo-cis oxygen atoms of the oxamido macrocyclic ligand, with Cu?Ni separations of 5.311 (1), 5.420 (2) and 5.307 Å (3), respectively. The temperature dependence of the magnetic susceptibility for 1, 2 and 3 was analyzed by means of the Hamiltonian ?=−2J?Ni?Cu, leading to J=−52.8, −45.7 and −56.9 cm−1 for 1, 2 and 3, respectively.  相似文献   

6.
Three new Cu(II) complexes, [Cu2(C3H2O4)(phen)2(H2O)3](NO3)2(H2O)2 (1) (C3H2O4 = malonate, phen = 1,10-phenanthroline), [Cu2(C4H4O4)(phen)2(H2O)2](NO3)2 (2) (C4H4O4 = succinate), and {[Cu2(phen)2(H2O)(NO3)]2(C5H6O4)2}(NO3)2 (3) (C5H6O4 = glutarate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are of dinuclear copper(II) complexes bridged by malonate and succinate dianions, respectively, and 3 is a tetranuclear species formed by two {[Cu2(phen)2(H2O)(NO3)](C5H6O4)} fragments. The copper ions in 1 and 3 show square-pyramidal coordination geometry, while the copper ions in 2 exhibit a square planar geometry. In each complex, the dicarboxylate ligand is coordinated to copper ions as a chelate and monodentate (1), bis-monodentate (2), and bis-bridging ligand toward the copper ions with syn-syn coordination mode (3).  相似文献   

7.
The dinuclear and trinuclear copper(II) complexes [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 · [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1) and [Cu3(L)2(OH)2(H2O)2](NO3)2 (2) (HL=2-[2-(α-pyridyl)ethyl]imino-3-butanone oxime and phen=1,10-phenanthroline) were prepared and their crystal structures have been determined by X-ray crystallography. Complex 1 is composed of [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 (1a) and [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1b). In 1a and 1b, one oximato of L and one hydroxo group bridge two copper(II) ions. The linear trinuclear cation [Cu3(L)2(OH)2(H2O)2]2+ in 2 is centrosymmetric, and one oximato and one hydroxo group bridge the central and terminal copper(II) ions. The strong antiferromagnetic interactions within the dinuclear and trinuclear complexes 1 and 2 have been observed (2J=∼−900 cm−1 for 1 and 2, respectively, H=−2JS1·S2).  相似文献   

8.
《Inorganica chimica acta》2004,357(12):3574-3582
The copper(II) complexes [Cu(PyTT)2(H2O)](NO3)2 (A) and [CuCl2(μ-PyTT)2CuCl(H2O)]Cl · 3H2O (B) were synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, UV-Vis-NIR diffuse reflectance and magnetic susceptibility measurements. In the mononuclear compound A the copper ion is in a distorted square pyramidal geometry, with the equatorial plane formed by two thiazoline nitrogen atoms, one imino nitrogen atom and one water molecule, whereas the axial site is occupied by one imino nitrogen atom. The compound B is dinuclear and both Cu(II) centres present environments that can be described as slightly distorted square pyramidal geometries. The observed molar magnetic susceptibility for A (μ=2.13 BM) allows to exclude metal-metal interactions, supporting a monomeric structural formulation for this compound. In compound B, magnetic susceptibility measurements in the temperature range 6.2-288 K show an intradimer antiferromagnetic interaction (J=−11.8 cm−1).  相似文献   

9.
The synthesis and characterization of four new complexes with the bioactive ligand 3-aminoflavone (3-af) are reported. The complexes of general formula [M(3-af)2(H2O)2](NO3)2 · nH2O], where M = Co(II), Ni(II), and Zn(II), and n = 0, 2, 0, respectively, and [Cu(3-af)2(NO3)2] compound were prepared and studied. In particular, to investigate the binding in detail, the crystal structures of the free ligand (3-af) and [Cu(3-af)2(NO3)2] (1) were determined. The new coordination compounds were identified and characterized by elemental analysis, magnetic measurements, and infrared and ligand-field spectra. The crystal structure of the Cu(II) complex reveals that the ligand acts as a N,O-bidentate chelate ligand forming a five-membered ring with the copper(II) ion. The copper(II) ion is octahedrally surrounded by the two amino nitrogens and two carbonyl oxygens from two chelating organic ligands in trans arrangement. Two molecules of coordinated nitrate anions occupy axial positions. The spectral and magnetic properties are in accordance with the structural data of the copper(II) compound. From X-ray powder-diffraction patterns and IR spectra, the complexes of nickel(II) (2) and cobalt(II) (3) were found to be mutually isomorphous. The results of the spectroscopic studies suggest a mononuclear structure of 2 and 3 complexes. The variable-temperature (1.8-300 K) magnetic susceptibility data of 2 indicate a weak ferromagnetic interaction. The magnetic behavior of complex 3 is characteristic of cobalt(II) systems with an important orbital contribution via spin-orbit-coupling and also suggests a weak ferromagnetic interaction.  相似文献   

10.
In this paper, two di-substituted triazine-based ligands, 6-chloro-N,N,NN′-tetrakis-pyridin-2-ylmethyl-[1,3,5]triazine-2,4-diamine (L1), and 6-chloro-N,N′-bis-pyridin-2-ylmethyl-N,N′-bis-thiophen-2-ylmethyl-[1,3,5]triazine-2,4-diamine (L2), have been prepared. Reaction of CuCl2·2H2O and Cu(NO3)2·3H2O with L1 and L2 results in the formation of [Cu2Cl4(L1)]·3MeOH (compound 1), [Cu4(NO3)8(L1)2]·2.07CH2Cl2·0.93MeOH (compound 2), [Cu2Cl4(L2)2] (compound 3) and [Cu(NO3)2(L2)]·CH2Cl2 (compound 4), respectively, which have been fully characterized and determined by single-crystal X-ray crystallography, FT-IR, elemental analysis, thermogravimetric measurement and magnetic susceptibility. The dinuclear compound 1 shows strong π-π interactions between the neighboring pyridine rings. The nitrate-π (1,3,5-triazine ring) interaction with the distance of 2.755 Å in compound 2, is the closest contact reported so far. Compounds 3 and 4 are mononuclear copper(II) compounds, in which none of thiophene rings coordinates with copper(II) ion. In addition, the different orientations of two thiophene rings in compounds 3 and 4 lead to the π-π and CH2Cl2-π (thiophene ring) interactions in compound 4, but not in compound 3.  相似文献   

11.
Two new copper(II) complexes, [Cu3(L1)2(H2O)2](ClO4)2 (1) and [CuL2⊂ (H2O)] (2) have been derived from two di-compartmental Schiff base ligands H2L1 and H2L2, respectively. Depending on slight modification of the substituent group of the potentially N2O4 donor ligands, tri- and mononuclear structures are obtained, which have been confirmed by single-crystal X-ray diffraction studies. Both complexes have been characterized by elemental analysis, IR, UV-vis and EPR spectroscopy. Complex 1 consists of an angular trinuclear array of copper ions, while complex 2 consists of a mononuclear copper center. Variable temperature magnetic susceptibility measurements have been performed to investigate the magnetic behaviour of complex 1 and the result indicates a strong antiferromagnetic exchange interaction (J = −120.1(2) cm−1) between the adjacent copper(II) centers through two double μ2-phenoxo bridges. Complex 2 is a mononuclear inclusion compound encapsulating one water molecule in the vacant external compartment of the ligand through hydrogen-bonding interactions.  相似文献   

12.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

13.
A novel series of copper(II) complexes of formula [Cu(tren)(mpda)](ClO4)2 · 1/2H2O (1), [Cu2(tren)2(mpda)](ClO4)4 · 2H2O (2), and [Cu2(tren)2(ppda)](ClO4)4 · 2H2O (3) containing the tetradentate tris(2-aminoethyl)amine (tren) terminal ligand and the potentially bridging 1,n-phenylenediamine [n = 3 (mpda) and 4 (ppda)] ligand have been prepared and spectroscopically characterized. X-ray diffraction on single crystals of 1 and 3 show the presence of mono- (1) and dinuclear (3) copper(II) units where the mpda (1) and ppda (3) ligands adopt terminal monodentate (1) and bridging bis(monodentate) (3) coordination modes toward [Cu(tren)]2+ cations with an overall non-planar, orthogonal disposition of the phenylene group and the N-Cu-N threefold axis of the trigonal bipyramid of each copper(II) ion [values of the Cu-N-C-C torsion angle (?) in the range of 50.8(3)-79.2(2) (1) and 80.9(2)-86.5(2)° (3)]. Variable-temperature magnetic susceptibility measurements on the dinuclear complexes 2 and 3 show the occurrence of moderate ferromagnetic (J = +8.3 cm−1, 2) and strong antiferromagnetic (J = −51.4 cm−1, 3) couplings between the two copper(II) ions across the meta- and para-phenylenediamine bridges, leading to S = 1 (2) and S = 0 (3) ground spin states [H = −JS1 · S2 with S1 = S2 = SCu = 1/2]. Density functional theory (DFT) calculations on the triplet (2) and broken-symmetry (BS) singlet (3) ground spin states, support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction through the predominantly π-type orbital pathway of the 1,n-phenylenediamine bridge. Finally, a new magneto-structural correlation between the magnitude of the magnetic coupling (J) and the Cu-N-C-C torsion angle (?) has been found which reveals the role of σ- versus π-type orbital pathways in the modulation of the magnetic coupling for m- and p-phenylenediamine-bridged dicopper(II) complexes.  相似文献   

14.
A one-pot reaction of CuCl2 · 2H2O and malonic acid leads to a novel three dimensional inorganic-organic hybrid framework, [Na2Cu(mal)2(H2O)2]n, (1) (mal = malonate dianion). Single crystal X-ray structure of 1 reveals that it is a novel heterometallic three dimensional coordination-polymeric network which consists of interlocked anionic Cu-malonate and cationic Na-water-malonate sheets, where malonate dianion functions as an unprecedented heptadentate ligand. Low temperature magnetic study reveals that the compound is weak ferromagnetically coupled and this is supported by magneto-structural correlation. Thermogravimetric analyses are performed and it is observed that complex 1 upon heating finally transforms to CuO, which is evident by X-ray powder diffraction technique. Controlled solid state thermolysis of complex 1 at ∼850 °C for 24 h leads to the formation of CuO nanorods, which is confirmed by scanning electron microscopy and X-ray powder diffraction technique. The nanorods formed here have average diameters of ca. 40-200 nm and lengths up to 13 μm.  相似文献   

15.
A novel one-dimensional heterometallic complex, {Cd2[NiL]2(SCN)4(H2O)}n (1), has been synthesized and characterized by single-crystal X-ray analysis, where L is dianion of 2,3-dioxo-5,6,13,14-dibenzo-9,10-cyclohexyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene. The most striking feature of 1 is that in the structure there is one type of S-S bond (1.823(13) Å) formed by two thiocyanate groups which has not been reported to our knowledge. The DNA cleavage activity of 1 in the presence of H2O2 was compared with those of nickel(II) ion, cadmium(II) ion and corresponding mononuclear precursor NiL (2). The DNA cleavage kinetics was studied and the corresponding activation parameters of 1 were obtained.  相似文献   

16.
Two novel dinuclear nickel(II) complexes [Ni2(ntb)2(μ-tp)(H2O)1.61(CH3OH)0.39](NO3)2·5.13CH3OH·2.25H2O (1) and [Ni2(ntb)2(μ-fum)(H2O)(CH3OH)](NO3)2·6CH3OH·H2O (2) (tp = terephthalate dianion, fum = fumarate dianion, ntb = tris(2-benzimidazolylmethyl)amine) containing tetradentate poly-benzimidazole ligand were synthesized and structurally characterized by IR spectra, UV-Vis, elemental analysis and X-ray crystallography. The Ni(II) ions in 1 and 2 have distorted octahedral geometry with four nitrogen atoms of ntb, one oxygen atom of water and one oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complexes 1 and 2 consist of terephthalato- and fumarato-bridged dinickel(II) centers in bis(monodentate) bonding fashion. The Ni?Ni distances are 11.333 Å for 1 and 8.966 Å for 2. The magnetic susceptibility measurements at variable temperature show that two complexes exhibit weak antiferromagnetic interactions between nickel(II) ions with J values of −0.25 cm−1 and −0.36 cm−1, respectively.  相似文献   

17.
The dinuclear dicarboxylato-bridged copper(II) complexes [Cu2(TPA)2(μ-tp)](ClO4)2 · H2O (1), [Cu2(TPA)2(μ-fum)](ClO4)2 · 2H2O (2) and [Cu2(pmedien)2(μ-fum)(H2O)2](ClO4)2 (3) (tp = terephthalate dianion, fum = fumarate dianion, TPA = tris(2-pyridylmethyl)amine and pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine) were synthesized and structurally characterized by X-ray crystallography. The structures of the TPA complexes 1 and 2 consist of μ-tp or μ-fum bridging two Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry around the Cu(II) ions in these compounds has a distorted trigonal bipyamidal geometry, TBP with four nitrogen atoms from the TPA ligand and a coordinated oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complex 3 has a distorted square pyramidal geometry achieved by the three N-atoms of the pmedien, one fum-carboxylate-oxygen and by an oxygen atom from a coordinated water molecule. The intradimer Cu…Cu distances in these complexes are 11.078(3), 8.663(4) and 9.520(3) Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(mondentate) coordination mode for the bridged dicarboxylato ligands in compounds 1 and 2. The susceptibility measurements at variable temperature over the 2-300 K range are reported. For 1-3, it has been observed slight antiferromagnetic coupling with J values of −0.8, −3.0 and −2.9 cm−1, respectively.  相似文献   

18.
When the complexes [Cu(L1)(H2O)](ClO4)21, where L1 = 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane, and [Cu(L2)Cl2] 2, where L2 = 4-methyl-1-(quinol-2-ylmethyl)-1,4-diazacycloheptane are interacted with one/two equivalents of bis(p-nitrophenylphosphate, (p-NO2Ph)2PO2, BNP), no hydrolysis of BNP is observed. From the solution the adducts of copper(II) complexes [Cu2(L1)2((p-NO2Ph)2PO2)2]-(ClO4)23 and [Cu(L2)((p-NO2Ph)2PO2)2]·H2O 4 have been isolated and structurally characterised. The X-ray crystal structure of 3 contains two Cu(L1) units bridged by two BNP molecules. The Cu···Cu distance (5.1 Å) reveals no Cu-Cu interaction. On the other hand, the complex 4 is mononuclear with Cu(II) coordinated to the 3N ligand as well as BNP molecules through phosphate oxygen. The trigonality index (τ, 0.37) observed for 4 is high suggesting the presence of significant trigonal distortion in the coordination geometry around copper(II). The complexes are further characterized by spectral and electrochemical studies.  相似文献   

19.
Six new 1-3D coordination polymers of an unsymmetrical angular ligand 3-pyridin-4-ylbenzoate (L), namely, [Ni(L)2(C2H6O2)]n (1), [Cd(L)2(H2O)2]n·4H2O (2), [Zn2(OH)(L)3]n (3), [Fe2(OH)(L)3]n (4), [Ni(L)2(H2O)]n (5) and [Cd(L)2(H2O)]n (6) were hydro(solvo)thermally synthesized. They have abounding structure chemistry ranging from one-dimensional ribbons (1 and 2), and two-dimensional novel helical double-layered frameworks (3 and 4) to three-dimensional CdSO4-topological porous interpenetrating architectures with hydrophilic and hydrophobic channels regularly arraying (5 and 6). The labile conformations and coordination modes of ligand L, which were finely tuned by reaction conditions, perhaps play the key role in the construction of various architectures. Very interestingly, the slight difference in solvent system or temperature resulted in the distinct architectures of nickel(II) complexes 1 and 5 or cadmium(II) complexes 2 and 6. As expected, the unsymmetrical ligand L has a trend to construct metal-organic helixes as observed in 3 and 4. Thermogravimetric analysis of 5 shows the main framework retains stability until a higher temperature 379 °C. The 3D microporous network of 5 can slightly absorb for N2 and Ar. Compounds 2, 3 and 6 emit ligand-centered photoluminescence but with obviously different intensities owing to the structural diversities and coordinating water molecules.  相似文献   

20.
A potentially heptadentate ligand H3L (N,N-bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol) and its two Ni(II) complexes, [Ni(H2L)H2O](H2O)3ClO4 (1) and [Ni(H2L)(H2O)](H2O)Cl (2) were prepared and characterized. X-ray structural analyses indicate that complex 1 has a distorted octahedral coordination geometry, with four amine N atoms of H2L defining the equatorial plane, one aqua O atom and one phenoxo O atom of the ligand occupying two axial positions, respectively. The Ni(II) center of 2 has coordination geometry similar to that of 1. IR and electronic spectra of 1 and 2 are in agreement with their crystal structural features. Approximately along the ab plane, 2D supramolecular structure of 1 is assembled through multiple hydrogen bonds between hydroxy groups of the ligands, coordinated and crystal lattice H2O and π-π stacking interactions between adjacent phenyl rings of the ligands, while for that of 2, probably along the a axis, 1D chain structure is also formed by multiple hydrogen bonds, but lack of π-π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号