首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four novel metal coordination polymers, [Cd(dpa)(H2O)]n (1), [Cd(dpa)(2,2′-bipy)]n (2), {[Cd2(dpa)2(4,4′-bipy)3](4,4′-bipy)(H2O)2}n (3) and [Cd(dpa)(bim)2(H2O)]}n (4) (H2dpa = 2,4′-biphenyl-dicarboxylic acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine, bim = benzimidazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that the 2,4′-diphenic acids acts as bridging ligands, exhibiting rich coordination modes to link metal ions: bis-monodentate, bidentate chelating, chelating/bridging, monoatomic bridging and monodentate modes. In addition, the luminescent properties for compound 1-4 are also investigated in this work.  相似文献   

2.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

3.
By the reactions of Cu(AcO)2·H2O and Cu(HCOO)2·4H2O with 4,4′-dimethyl-2,2′-bipyridine and 5,5′-dimethyl-2,2′-bipyridine the compounds [Cu(AcO)2(4,4′-Me2-2,2′-bipy)]·1/2H2O (1), [Cu(AcO)2(5,5′-Me2-2,2′-bipy)(H2O)] (2), [Cu(HCOO)(μ-HCOO)(4,4′-Me2-2,2′-bipy)]n·nH2O (3) and [Cu(HCOO)(μ-HCOO)(5,5′-Me2-2,2′-bipy)]n·2nH2O (4) were obtained. In the acetate complexes, 1 and 2, the geometry around copper is distorted octahedral and square pyramidal, respectively. Dimeric units of different geometry are formed in both cases through hydrogen bonds in which non-coordinated (in 1) and coordinated (in 2) water molecules are involved. The structures of 3 and 4 consist of polymeric monodimensional chains of square pyramidal copper units linked by axial-equatorial syn-anti (3) or anti-anti (4) bridging formate groups. Water molecules form hydrogen bonds with formate groups of the same chain in compound 3. In compound 4 the water molecules link the polymeric contiguous chains of complex through hydrogen bonds with oxygen atoms of formate groups and they are also linked between them, forming monodimensional water chains which run parallel to the complex chains. Sheets parallel to the ac plane are formed by alternating chains of water and polymeric complex. Magnetic properties and EPR spectra for these compounds have been studied.  相似文献   

4.
Three new copper complexes, [CuIICuI(ip)(ipH)(4,4′-bipy)3/2]n (1), [Cu(ip)(4,4′-bipy)]n · 3nH2O (2), and [Cu(ipH)2(4,4′-bipy)]n (3), have been hydrothermally synthesized by the reaction of Cu(NO3)2 · 3H2O with isophthalic acid (ipH2) and 4,4′-bipyridine (4,4′-bipy) under different reaction conditions. Complex 1, a mixed-valence copper(I,II) complex, exhibits a 2-D interpenetrating grid framework, in which five-coordinated CuII and three-coordinated CuI environments are established. The oxidation states of center Cu atoms have been confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectra (EPR). Complex 2 features a 2-D box-like bilayer architecture, in which CuII atoms are linked by ip ligands to form a 1-D double-chain and the resulting chains are further strutted by the 4,4′-bipy ligands. In complex 3, two bridging 4,4′-bipy ligands and two terminal ipH ligands confine the CuII center in a square plane coordination geometry. The whole molecule of 3 was arranged into a 1-D linear chain structure. Additionally, the thermogravimetric analyses (TGA) for complexes 1-3 are also discussed in this paper.  相似文献   

5.
Six transition-metal complexes, {[Co(4,4′-bipy)(H2O)4](Hbs)2 · 3H2O}n (1), [Mn(4,4′-bipy)2(H2O)4](Hbs)2 · 2H2O (2), {[Mn(HCOO)(H2O)2(4,4′-bipy)]2[Mn(4,4′-bipy)(Hssal)2(H2O)2]}n (3), [Cd(4,4′-bipy)2(H2O)4](Hbs)2 · 2H2O (4), {[Cd3(CH3COO)4(4,4′-bipy)4](Hbs)2 · 10H2O}n (5), and {[Cd(HCOO)(H2O)2(4,4′-bipy)]2[Cd(4,4′-bipy)(Hssal)2(H2O)2]}n (6), have been synthesized by hydrothermal or reflux synthetic method and characterized by single-crystal X-ray diffraction, IR, elemental analysis, thermogravimetric analysis and fluorescence analysis, where Hssal2− is doubly deprotonated 5-sulfosalicylate, Hbs is 4-hydroxybenzenesulfonate and 4,4′-bipy is 4,4′-bipyridine. The structural analyses showed that all of the six complexes are cation-anion species containing in situ synthesized ligands, Hbs or HCOO, and the former arises from the decarboxylation of 5-sulfosalicylic acid under the hydrothermal conditions. The formate anions derived from the hydrolysis of DMF. A series of supramolecular compounds show that the structural diversity is strongly associated with their properties.  相似文献   

6.
Hua Jin 《Inorganica chimica acta》2007,360(10):3347-3353
Three new organic-inorganic hybrid compounds [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(2,2′-bipy)(4,4′-Hbipy)][CuI(4,4′-bipy)]2[P2W18O62] · 3H2O (1), [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(4,4′-bipy)]2[PW12O40] · 0.25H2O (2), and[CuI(4,4′-bipy)]3[PMo12O40] · en · 3H2O (3) (2,2′- bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. Compound 1 represents the first 1D ladderlike structure formed by Dawson-type polyoxoanion [P2W18O62]6− and coordination polymer with mixed 4,4′-bipy and 2,2′-bipy ligands. The novel structure of 2 is composed of 1D hybrid zigzag chains linked by chains into a 3D framework. In compound 3, the [PMo12O40]3− clusters are hung on chains to form a new 1D chain.  相似文献   

7.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

8.
Hydrothermal reaction of the carboxylate-based ligands with metal salts (or oxide) and 4,4′-bipyridine as a second linker, afforded three new coordination polymers, namely, [Co(PCPA)2(4,4′-bpy)]n (1) with 2-D rectangle grids, Cu(PCPA)2(4,4′-bpy)]n (2) with a linear chain, [Ag(PCPA)(PCPAH)(4,4′-bpy) · H2O]n (3) with 1-D molecular ladder (4,4′-bpy = 4,4′-bipyridine; PCPA = p-chlorophenoxyacetate; PCPAH = p-chlorophenoxyacetic acid). It is noticeable that compound 3 is also a supramolecular framework built by coordination bonds, weak interactions between Ag ions, π-π stacking interactions and hydrogen-bonded interactions. The three compounds with different structure motifs have been characterized by elemental analyses, IR spectra, ultraviolet-visible diffuse reflection integral spectra, fluorescent spectra and single crystal X-ray diffraction analysis. Furthermore, the bonding properties of compound 3 were investigated in terms of the absorption spectrum, as well as the calculated band structures and density of states.  相似文献   

9.
Although the 2,2′-biphenyldicarboxylate ligand (2,2′-dpa) has been widely used to construct metal-organic frameworks (MOFs) with helical sub-structure, the effect of the helical arrangement of spin carriers on the magnetic properties remains rarely scarce. In this article, two unique magnetic metal-organic supramolecular frameworks with different structural features, [Cu2(dpa)2(H2O)2(4,4′-dpdo)0.5]n (1) and [Ni(H2O)4(dpa)] · (4,4′-dpdo)(H2O) (2) (dpdo = 4,4′-dipyridine-N,N′-dioxide), have been isolated from the direct reaction of H2dpa with their corresponding salts in the presence of dpdo. In complex 1, the Cu-dpa double-helical chains, which are bridged by long flexible μ2-dpdo ligands to give rise to a regular 63 covalent layer, exhibit strong antiferromagnetic coupling interactions. Whereas the 1D [Ni(dpa)]n helical chains in complex 2 exhibit weak antiferromagnetic coupling interactions. Rich hydrogen bonds between perpendicular 1D [Ni(dpa)]n helical chains and quasi-1D (dpdo)n chains result in an intricate 3D supramolecular network.  相似文献   

10.
A new set of supramolecular complexes, [Ni(DPAP-SHZ)(2,2′-bipy)CH3OH] (1), [Zn(DPAP-SHZ)(2,2′-bipy)CH3OH] (2) and [Cu(DPAP-SHZ)(2,2′-bipy)] · 2CH2Cl2 (3) (DPAP-SHZ = 1,3-diphenyl-4-(salicylidene hydrazide)-acetyl-pyrazolone-5, 2,2′-bipy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, TG-DTA, IR spectroscopy and X-ray crystallography. The X-ray diffraction analyses of the complexes show that the Ni(II) ion and Zn(II) ion centers are six-coordinated while the Cu(II) ion center is five-coordinated. The three supramolecular complexes contain the same ligands, namely DPAP-SHZ and 2,2′-bipy. However, their hydrogen bonds are significantly different, and this variation apparently is responsible for the dissimilar structures of the three supramolecular complexes.  相似文献   

11.
Six hydrogen-bonded silver(I) complexes, Ag(4-abaH)2(NO3) (1), [Ag(4-abaH)2(NO3)]n (2), {[Ag(4-aba)(4-abaH)] · H2O}n (3), {[Ag(4,4-bipy)(H2O)](4-aba)0.5(NO3)0.5 · (H2O)0.5}n (4), [Ag[(3-abaH0.5)2] (5), and {[Ag(3-aba)] · H2O}n (6) (4-abaH=4-aminobenzoic acid, 3-abaH=3-aminobenzoic acid), have been synthesized and characterized by single-crystal X-ray diffraction analyses. In 1, 4-abaH serves as a monodentate ligand coordinating to Ag(I) through its nitrogen atom, while uncoordinated carboxylic group links (4-abaH)-Ag-(4-abaH) into a one-dimensional metallic carboxylic synthon. 2 may be regarded as an extension of 1 into a two-dimensional carboxylic synthon through NO3 − bridging two adjacent Ag(I) centers. In 3, 4-abaH in a monodentate mode and 4-aba in a μ-N,O bridging mode link three-coordinated Ag(I) to form a one-dimensional swallow-like chain, which is further extended into a two-dimensional layer structure through inter-chain hydrogen bonding interactions. The alternating Ag(I) and 4,4-bipy in 4 give rise to a slightly distorted linear chain, which is further extended into a two-dimensional layer through the completely overlapping and off-set stacking interactions. The hydrogen bonds involving in weakly coordinated aqueous molecules and 4-aba further extend it into a three-dimensional framework. In 5, the inter-molecular hydrogen bonding and π-π stacking interactions extend Ag[(3-abaH0.5)2] into a two-dimensional supramolecular architecture. In 6, 3-aba in a μ3-N,O,O coordination mode links three three-coordinated Ag(I) into a two-dimensional network. Uncoordinated aqueous molecules and the adjacent 3-aba oxygen atoms form intermolecular hydrogen bonds.  相似文献   

12.
The reactions of 4-aminobenzoic acid (4-abaH), 4,4′-bipyridine (4,4′-bipy) and transitional metal ions (ZnII, MnII and CuII) gave rise to four supramolecular architectures, namely, [(4-abaH)2(4,4′-bipy)] (1), {[Zn2(4,4′-bipy)2(4-aba)4] (H2O)5}n (2), {[Mn(4,4′-bipy)2(H2O)4] (4-aba)Br(H2O)3} (3) and {[Cu2(4,4′-bipy)3(H2O)2(4-aba)2](NO3)2(H2O)4}n (4). Their crystal structures were determined by X-ray diffraction and show different structural motifs. 1 is a one-dimensional hydrogen bonding ladder constructed by 4-abaH and 4,4′-bipy. In 2, 4,4′-bipy bridges Zn(4-aba)2 units forming a one-dimensional zigzag chain, which is extended into a three-dimensional framework by crystalline water molecules through hydrogen bonding interactions. Three-dimensional network of 3 is constructed by mononuclear [Mn(4,4′-bipy)2(H2O)4]2+ cations, neutral crystalline water molecules, and 4-aba and Br anions through extensive hydrogen bonding and π-π interactions. However, one-dimensional ladder formed by 4,4′-bipy and Cu(4-aba) units in 4 is extended into a three-dimensional architecture through interpenetration of the lateral 4-aba arms into squares of the adjacent Cu-(4,4′-bipy) ladders and extensive hydrogen bonding interactions.  相似文献   

13.
A new flexible aromatic multithiocarboxylate ligand: 1,4-benzenebis(thioacetic acid) (H2L), was synthesized and introduced to construct three interesting metal-organic frameworks (MOFs) with the photoluminescent properties. Three MOFs were characterized by the elemental analysis, infrared (IR) spectrum, and single crystal X-ray diffraction. [Zn3L3(2,2′-bipy)2]n (1) is a two-dimensional (2D) layered architecture that consists of the linear trinuclear units of Zn atoms. [ZnL(2,2′-bipy)(H2O)]n·0.7nH2O (2) is a one-dimensional (1D) helical chain, which further forms a 2D structure with 30-membered ring with a size of 7.64 × 15.53 Å via O−H···O hydrogen bonds. [ZnL(phen)(H2O)]n·0.35nH2O (3) presents a 2D supramolecular network through the O−H···O interactions. Their thermal and photoluminescent properties in solid state were given.  相似文献   

14.
Interaction of [Cp*RuCl(μ-Cl)]2 with 2,2′-bipyridine (2,2′-bipy) in the presence of Na[PF6] gave a chloride bridging dinuclear complex [{Cp*Ru(2,2′-bipy)}2(μ-Cl)][PF6] (1). In the crystal structure, the cation [{Cp*Ru(2,2′-bipy)}2(μ-Cl)]+ contains a bent Ru-Cl-Ru linkage with an angle of 141.87(12)°. The tris(μ-hydroxo)diruthenium complex [{(η6-p-cymene)Ru}2(μ-OH)3][BF4] in acetone solution was treated by 4,4′-bipyridine (4,4′-bipy) to give a hydroxo-bridged tetranuclear complex [{(η6-p-cymene)Ru}2(μ-OH)2(μ-4,4′-bipy)]2[BF4]4 (2). Complex 2 consists of four (η6-p-cymene)Ru moieties connected by two 4,4′-bipy and four hydroxo-bridging groups, forming a novel metallomacrocycle with alternating hydroxyl and 4,4′-bipy bridges between the ruthenium atoms. Spectroscopic properties along with electrochemistry of two organoruthenium (II) complexes 1 and 2 are reported.  相似文献   

15.
A metal organic-inorganic coordination framework formulated as {[Cu(4,4′-bipy)(H2O)3(SO4)] · 2H2O}n (1) (where 4,4′-bipy = 4,4′-bipyridine) has been successfully prepared by microwave synthesis. The title complex has been characterized by single crystal X-ray crystallography, FT-IR spectroscopy and thermal analysis. Complex (1) is an one-dimensional (1D) polymer in which 4,4′-bipy acts as a bridging ligand supporting the formation of infinite [Cu(4,4′-bipy)(H2O)3(SO4)] chains. The packing diagram shows that a 3D network is formed via hydrogen bonds. The infrared spectra and thermographic data are consistent with the chemical formula.  相似文献   

16.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

17.
A novel supramolecular assembly containing honeycomb-like channels [Cu(mal)(bpy)] · 3H2O (mal = malate, bpy = 2,2′-bipy) has been synthesized and characterized by elemental analyses, IR, EPR, TG, UV-Vis and single crystal X-ray diffraction. Compound 1 is constructed from spiral-shaped chains via O-H?O hydrogen bonds and π-π stacking interactions. To our knowledge, compound 1 represents the first supramolecular network constructed from the mixed malate and pyridine ligand.  相似文献   

18.
Two new organic-inorganic hybrid compounds, {[Cu(2,2′-bipy)2]2(Hbpy)[α-AlW12O40]}·H2O (1) and {[H2en][CuI(4,4′-bipy)]3(α-AlW12O40)}·4H2O (2) (2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine, py = pyridine, en = ethylene dimine) based on Keggin-type α-[AlW12O40]5− polyoxoaions and transition-metal organoamine subunits, have been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis (TG), and single-crystal X-ray diffraction. In addition, the electrochemical properties and photocatalytic activity of compound 1 were studied. The structural analysis reveals that 1 shows a 1D infinite chain structure constructed from [α-AlW12O40]5− polyoxoanions and {[CuII(2,2′-bipy)2][CuII(2,2′-bipy)(py)]}4+ fragments, in which the remarkable aspect is that [α-AlW12O40]5− polyoxoanion is modified in a fascinating symmetrical mode. Compound 2 displays an unprecedented 2D extended structure constructed from [α-AlW12O40]5− polyoxoanions and 4,4′-bipy-CuI-4,4′-bipy linear chains, in which three - chain belts formed by three linear chains arranged Cu parallel connect alternately with [α-AlW12O40]5− polyoxoanions. As far as we know, compounds 1 and 2 represent the first 1D and 2D extended hybrid materials constructed from 3d transition metals and polyoxotungstoaluminates linked through covalent bonds.  相似文献   

19.
Using the principle of crystal engineering, six metal-organic coordination polymers, [Cd(bdc)(3-pytpy)]n · 2nH2O (1), [Cd(bdc)0.5(3-pytpy)]n · n(ClO4) (2), Cd(ndc)0.5(3-pytpy)]n · n(ClO4) (3), [Zn(ndc)(3-pytpy)]n (4), [Cd(bqdc)(3-pytpy)]n (5), and [Zn(pam)(3-pytpy)]n · 2nH2O (6) (H2bdc = benzene-1,4-dicarboxylic acid, H2ndc = naphthalene-2,6-dicarboxylic acid, H2bqdc = 2,2′-biquinoline-4,4′-dicarboxylic acid, H2pam = pamoic acid), were synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Compounds 1-6 crystallize in the presence of organic-acid linkers as well as multi-functional N-donor ligand 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy). In complexes 1, 4, 5, and 6, the dicarboxylate as bridging ligand connects metal atoms to form the main body of 1D zigzag chains for 1 and 4, nearly linear chain for 5 and helical chain for 6, while 3-pytpy as tridentate chelating ligand is just like lateral arm grafting on both sides of these chains. In complexes 2 and 3, both the dicarboxylate and 3-pytpy as bridging ligands connect metal atoms into 2D polymeric structure for 2 and 1D chain of alternating loops and rods for 3. The weak interactions such as hydrogen bonding and π···π stacking were investigated on the formation of superamolecular structures and the influence of organic acid on the formation of the final structures was discussed. In addition, the photoluminescent properties of 1-6 were also determined.  相似文献   

20.
Three new Zn(II) complexes based on different organic-carboxylic acids, [Zn(mba)2(2,2′-bipy)] (1), [Zn(mpdaH)2(H2O)4] · 4H2O (2) and [Zn(cda)2(H2O)2]n (3) (Hmba = 4-methylbenzoic acid, H2mpda = 2,6-dimethylpyridine-3,5-dicarboxylic acid and H2cda = chelidonic acid) have been synthesized successfully under hydrothermal conditions. X-ray single crystal diffractions show that compounds 1 and 2 are the mononuclear and 3 is one-dimensional chain, in which the Zn(II) centers have different coordination geometries with octahedron for 1 and 2 and tetrahedron for 3. Through π-π stacking and/or hydrogen bonding (O-H?O and O-H?N) interactions, different supramolecular structures are assembled, namely, 2D supramolecular layer for 1 and 3D supramolecular networks for 2 and 3. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号