首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

2.
An oxalate-bridged binuclear iron(III) complex, [(acac)2Fe(μ-ox)Fe(acac)2], (acac=acetylacetonate anion and ox2−=oxalate anion) was prepared. The complex crystallized as two types of crystals under different conditions: one had 1,2-dichloroethane as a solvent molecule of crystallization 2, the other did not 1. Both compounds have been characterized by X-ray crystallography, infrared spectroscopy, and thermogravimetric analysis. Compound 1 has also been characterized by UV-Vis and 1H NMR spectroscopies, mass spectrometry, and electrochemistry. In both crystals, each iron(III) is coordinated in an octahedral arrangement by the oxygen atoms of an oxalate-bridging ligand and four oxygen atoms belonging to peripheral acac ligands in an octahedral arrangement. The intermetallic distance of Fe?Fe is 5.4368(9) Å in 1 and 5.438(2) Å in 2. Two iron(III) ions in each crystal are bridged by the oxalate and both lie in the oxalate-plane. The results of thermal analyses imply that the thermal stability of 2 is lower than that of 1. Cyclic voltammograms of 1 in acetonitrile and dichloromethane at low temperature showed two consecutive, quasi-Nernstian, one-electron reduction steps corresponding to the reduction of FeIII-FeIII to FeIII-FeII followed by the reduction of FeIII-FeII to FeII-FeII. The electrochemical comproportionation constants (Kc) of the equilibrium (FeIII-FeIII) + (FeII-FeII) ? 2(FeIII-FeII) are 108.9 in acetonitrile medium and 108.5 in dichloromethane, respectively. The considerably large Kc values indicate that the main factor contributing to the stabilization of the FeIII-FeII mixed-valence state is electronic delocalization through the oxalate-bridge.  相似文献   

3.
Preparation, crystal structures and magnetic properties of new heterodinuclear CuIIGdIII (1) and CuIITbIII (2) complexes [CuLn(L)(NO3)2(H2O)3MeOH]NO3·MeOH (where Ln = Gd, Tb) with the hexadentate Schiff-base compartmental ligand N,N′-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine (H2L = C19H20N2O4Br2) (0) have been described. Crystal structure analysis of 1 and 2 revealed that they are isostructural and form discrete dinuclear units with dihedral angle between the O1Cu1O2 and O1Gd1/Tb1O2 planes equal to 2.5(1)° and 2.6(1)°, respectively. The variable-temperature and variable-field magnetic measurements indicate that the metal centers in 1 and 2 are ferromagnetically coupled (J = 7.89 cm−1 for 1). Crystal and molecular structure of the Schiff base ligand (0) has been also reported. The complex formation changes the conformation of Schiff base ligand molecule.  相似文献   

4.
Reactions of FeII, CoII, NiII, and ZnII salts with 6-quinolinecarboxylic acid (HL) under the hydrothermal conditions afford three monomeric complexes [M(L)2(H2O)4] (M = FeII for 1, CoII for 2, and NiII for 3) and a 1-D polymeric species {[Zn(L)2(H2O)] · H2O}n (4). The crystal structures of the ligand HL and these four complexes have been determined by using the X-ray single-crystal diffraction technique. The results suggest that complexes 1-3 are isostructural, displaying novel 3-D pillar-layered networks through multiple intermolecular hydrogen bonds, whereas in coordination polymer 4, the 1-D comb-like coordination chains are extended to generate a hydrogen-bonded layer, which is further reinforced via aromatic stacking interactions. Solid-state properties such as thermal stability and fluorescence emission of the polymeric ZnII complex 4 have also been investigated.  相似文献   

5.
Ray K  Lee SM  Que L 《Inorganica chimica acta》2008,361(4):1066-1069
The mechanism of formation of [FeIV(O)(N4Py)]2+ (2, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) from the reaction of [FeII(N4Py)(CH3CN)]2+ (1) with m-chloroperbenzoic acid (mCPBA) in CH2Cl2 at −30 °C has been studied on the basis of the visible spectral changes observed and the reaction stoichiometry. It is shown that the conversion of 1 to 2 in 90% yield requires 1.5 equiv. peracid and takes place in two successive one-electron steps via an [FeIII(N4Py)OH]2+(3) intermediate. The first oxidation step uses 0.5 equiv. peracid and produces 0.5 equiv. 3-chlorobenzoic acid, while the second step uses 1 equiv. peracid and affords byproducts derived from chlorophenyl radical. We conclude that the FeII(N4Py) center promotes O-O bond heterolysis, while the FeIII(N4Py) center favors O-O bond homolysis, so the nature of O-O bond cleavage is dependent on the iron oxidation state.  相似文献   

6.
Six new bromothallate(III)-containing salts with different alkyl diammonium cations have been prepared from bromide containing solutions and studied by single-crystal X-ray crystallographic analyses. The N,N′-diethyl-N,N,N′,N′-tetramethyl-1,2-ethylenediammonium, N-methyl-1,3-propanediammonium, N,N,N′,N′-tetramethyl-1,3-propanediammonium and N,N,N′,N′-tetraethyl-1,2-ethylenediammonium cations yield complexes (I, II, III and IV, respectively) with the [TlBr5]2− anionic stoichiometry. For I and II, both complexes contain the [TlBr5]2− anion. In complex II, this appears as a distorted octahedron with one long Tl?Br2′ contact of 3.632(4) Å from an adjacent anion, thus completing the hexacoordination about an otherwise distorted square pyramid. On the other hand, for III and IV, both complexes contain a tetrahedral [TlBr4] anion together with an isolated, but hydrogen-bonded, Br anion. The 1,5-hexanediammonium complex (V) contains tetrahedral [TlBr4], slightly distorted octahedral [TlBr6]3− and Br anions. The asymmetric unit of the N,N-diethyl-1,3-propanediammonium salt (VI) contains one cation and half of each of a [TlBr4] and an axially compressed octahedral [TlBr6]3− anion. Extensive hydrogen-bonded networks exist in complexes II-VI. NH?Br hydrogen bonds generally have a significant influence on the nature of the anions present in species with the formal [TlBr5] stoichiometry.  相似文献   

7.
A series of mononuclear manganese(III) complexes of formulae [Mn(L)(X)(H2O)] (1-13) and [Mn(L)(X)] (14-17) (X = ClO4, F, Cl, Br, I, NCS, N3), derived from the Schiff bases of 5-bromosalicylaldehyde and different types of diamine (1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane and 1,4-diaminobutane), have been synthesized and characterized by the combination of IR, UV-Vis spectroscopies, cyclic voltammetry and by X-ray crystallography. The redox properties of all the manganese(III) complexes show grossly identical features consisting of a reversible or quasireversible MnIII/MnII reduction. Besides MnIII/MnII reduction, the complexes 4, 5, 10, 13 and 16 also show reversible or quasireversible MnIII/MnIV oxidation. A linear correlation has been found for the complexes 5, 7, 11 and 13 [Mn(L2)(X)(H2O)] (X = F, Cl, Br, I) when E1/2 [MnIII/MnII] is plotted against Mulliken electronegativities (χM). The effect of the flexibility of the ligand on redox potential has been studied. It has been observed that the manganese(II) state is stabilized with increasing flexibility of the ligand environment. The crystal structure of 6 shows an octahedral geometry.  相似文献   

8.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

9.
The metal complexation properties of a functionalized N3O2 donor ligand H2L2, where H2L2 stands for 2,6-diacetyl-4-carboxymethyl-pyridine bis(benzoylhydrazone), are investigated by structural and spectroscopic (IR, ESI-MS and EPR) characterization of its Mn(II) and Co(II) complexes. The ligand H2L2 is observed to react essentially in the same fashion as its unmodified parent H2L1 producing mixed-ligand [M(H2L2)(Cl2)] complexes (M = MnII (1), CoII (3)) upon treatment with MCl2. Complexes [M(HL2)(H2O)(EtOH)]BPh4 (M = Mn 2, M = Co 4), incorporating the supporting ligand in the partially deprotonated form (HL2), are formed by salt elimination of the [M(H2L2)(Cl2)] compounds with NaBPh4. Compounds 2 and 4 are isostructural featuring distorted pentagonal-bipyramidal coordinated MnII and CoII ions, with the H2O and EtOH ligands bound in axial positions. Intermolecular hydrogen bonding interactions of the type M-OH2?O-M involving the H2O ligands and the carbonyl functions of the supporting ligand assembles the complexes into dimers. Temperature-dependent magnetic susceptibility measurements (2-300 K) show a substantially paramagnetic Curie behavior for the Mn2+ compound (2) influenced by zero-field splitting and significant orbital angular momentum contribution for 4 (high-spin CoII). The exchange coupling across the MnII-OH2?O-MnII bridges in 2 was found to be less than 0.1 cm−1, suggesting that no significant intradimer exchange coupling occurs via this path.  相似文献   

10.
We present a new structurally determined seven-coordinate iron platform supported by the tris(2-picolyl)amine ligand 6,6′-(pyridin-2-ylmethylazanediyl)bis(methylene)bis(N-tert-butylpicolinamide) (TPA2C(O)NHtBu, 3) and its reactivity with oxo and nitrene transfer agents. Oxidation of the pentagonal bipyramidal, seven-coordinate iron(II)-triflate complex [TPA2C(O)NHtBuFeII(OTf)][OTf] (4) with PhIO produces the corresponding diiron(III) μ-oxo complex [(TPA2C(O)NHtBuFeIII)2(O)][OTf]4 (5). Mössbauer and magnetic measurements on 5 in the solid-state establish antiferromagnetic coupling between its two Fe(III) centers. Reactions of 4 with the nitrene transfer agents PhINTs (Ts = p-MeC6H4SO2) and PhINNs (Ns = p-NO2C6H4SO2) provide the corresponding iron(III)-amide congeners [TPA2C(O)NHtBuFeIII(NHTs)][OTf]2 (6) and [TPA2C(O)NHtBuFeIII(NHNs)][OTf]2 (7), respectively, affording a rare pair of isolable Fe(III)-amide compounds formed from nitrene transfer. By characterizing well-defined products in the crystalline form, derived from atom and group transfer to seven-coordinate iron, the collective data provide a starting point for the exploration of high-valent and metal-ligand multiply bonded species supported by approximate pentagonal-type ligand fields.  相似文献   

11.
Three new supramolecular complexes, [Cu(L1)H2O]n (1), [Zn(L2)(H2O)2]n (2), and [Cd(L2)(H2O)2]n (3), have been synthesized and characterized by FT-IR spectra, fluorescence spectra, and thermal analyses. And the structures of complexes 1-3 have been elucidated by X-ray analyses. Complex 1 is square pyramidal geometry with an unusually long bond (2.262 Å) from penta-coodinated CuII center to the oxygen atom of the apical coordinated water molecule. Molecules are linked by hydrogen bonding between the coordinated water and the phenolic oxygen atoms of adjacent molecules, thus formed a self-assembling continual zigzag chain supramolecular structure. The crystal structure of complex 2 (or 3) has indicated that the complex consists of one ZnII (or CdII) atom, one L2− unit and two coordinated water molecules, the coordination number of the ZnII (or CdII) atom is six, and formed an infinite metal-water chain supramolecular structure by intermolecular hydrogen bonds and π-π stacking of neighboring benzene rings. Meanwhile, the thermal and photophysical properties of the resulted complexes have also been discussed.  相似文献   

12.
Three novel d10 metal coordination polymers, {[Cd(H2odpa)(phen)2]·H2O}n (1), [Cd2(odpa)(phen)(H2O)2]n (2), {[Zn4(odpa)2(phen)2(H2O)2]·H2O}n (3), (H4odpa = 4,4′-oxydiphthalic acid, phen = 1,10-phenanthroline) were obtained with different metal/ligand ratios through hydrothermal method and characterized. Compound 1 forms a one dimensional zigzag chain, in which two phen ligands chelate to one cadmium atom. Compound 2 shows a three dimensional network structure comprised of new tetranuclear cadmium clusters as the nodes and (odpa)4− anions as the linkers, exhibits an unusual topological structure. Compound 3 is an unprecedented three dimensional polymer based on octanuclear zinc clusters cross-linked by (odpa)4− anions. In 1-3, central CdII/ZnII ions and (odpa)4− ligand display completely different coordination modes and conformations. In addition, the thermal stabilities and photoluminescence properties of 1-3 were also studied.  相似文献   

13.
The syntheses and structural characterization of four cobalt(II)-salicylate complexes, [(TPA)CoII(HSA)](ClO4) (1), [(isoBPMEN)CoII(HSA)](BPh4) (2), [(TPzA)CoII(HSA)](ClO4) (3) and [(6Me3TPA)CoII(HSA)](BPh4) (4) [TPA = tris(2-pyridylmethyl)amine, isoBPMEN = N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine, TPzA = tris((3,5-dimethyl-1H-pyrazole-1-yl)methyl)amine and 6Me3TPA = tris(6-methyl-2-pyridylmethyl)amine] are described. While 2, 3 and 4 are unreactive towards dioxygen, 1 reacts slowly with molecular oxygen to a cobalt(III)-salicylate complex, [(TPA)CoIII(SA)](ClO4) (1a). Two different crystalline forms, 1a and 1a·4H2O were isolated depending upon the condition of oxidation and crystallization. The solid-state structures of cobalt(III)-salicylate unit in both 1a and 1a·4H2O show a six-coordinate distorted octahedral coordination geometry at the cobalt(III) center ligated by the tetradentate ligand (TPA) where the dianionic salicylate (SA) binds in a bidentate fashion through one carboxylate and one phenolate oxygen. The hydrated form 1a·4H2O reveals a hexameric water cluster formation in the inorganic lattice host. The complex cation and the perchlorate counterion are involved in stabilizing the (H2O)6 cluster in a rare ‘pentamer planar+1’ conformation. A one-dimensional water tape consisting of edge-shared water hexamers is observed. The water tape represents a subunit of ice structure.  相似文献   

14.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

15.
A new potentially tridentate ligand HL11 consisting of 2-pyridinecarboxamide unit and azo functionality has been used, in its deprotonated form, to prepare a nickel(II) complex which has been structurally characterized. The ligand L11(−) affords a bis-complex [NiII(L11)2] (1). In 1, the two L11(−) ligands bind to the NiII center in a mer configuration. The relative orientations within the pairs of pyridyl-N, deprotonated amido-N, and azo-N atoms are cis, trans, and cis, respectively. The NiIIN2(pyridyl)N′2(amide)N″2(azo) coordination environment is severely distorted from ideal octahedral geometry. The Ni-Nam (am = amide) bond lengths are the shortest and the Ni-Nazo bond lengths are the longest. Complex 1 exhibits a quasireversible NiIII/NiII redox process. Moreover, the complex displays two ligand-centered (azo group) quasireversible redox processes. Spectroscopic (absorption and EPR) properties have been studied on coulometrically-generated nickel(III) species. To understand the nature of metal-ligand bonding interactions Density Functional Theory (DFT) calculations have been performed on 1 at the B3LYP level of theory. Calculations have also been done for closely related nickel(II) complexes of deprotonated pyridine amide ligands and comparative discussion has been made using observed results.  相似文献   

16.
The present paper describes a new tripodal ligand containing imidazole and pyridine arms and its first cis-[RuIII(L)(Cl)2]ClO4 complex (1). The crystal structure of 1 shows RuIII in a distorted octahedral geometry, in which two chloride ions, cis-positioned to each other, are coordinated besides the four nitrogen atoms from the tetradentate ligand L. The cyclic voltammogram of 1 exhibits three redox processes at −67, +73 and +200 mV versus SCE, which are attributed to the RuIII/RuII couple in the cis-[RuIII(L)(Cl)2]+, cis-[RuII(L)(H2O)(Cl)]+ and cis-[RuII(L)(H2O)2]2+, respectively. After chemical reduction (Zn(Hg) or EuII) only the cis-[RuII(L)(H2O)2]2+ species is observed in the cyclic voltammetry. Complex 1 absorbs at 470 nm (ε=1.4×103 mol−1 L cm−1), 335 nm (ε=7.9×103 mol−1 L cm−1), 301 nm (ε=6.7×103 mol−1 L cm−1) and 264 nm (ε=9.9×103 mol−1 L cm−1), in water solution (CF3COOH, 0.01 mol L−1, μ=0.1 mol L−1 with CF3COONa). Spectroelectrochemical experiments show a decrease of the bands at 335 and 301 nm, which are attributed to LMCT transitions from the chloride to the RuIII center and the appearance of a broad band at 402 nm ascribed to MLCT transition from the RuII center to the pyridine ligand. The lability of the water ligands in the cis-[RuII(L)(H2O)2]2+ species has been investigated using the auxiliary ligand pyrazine. Reactions in the presence of stoichiometric and excess of pyrazine yield the same species, cis-[RuII(L)(H2O)(pz)]2+, which exhibits a reversible redox process at 493 mV versus SCE and absorbs at 438 nm (ε=5.1×103 mol−1 L cm−1) and 394 nm (ε=4.2×103 mol−1 L cm−1). Experiments performed with a large excess of pyrazine gave a specific rate constant k1=(2.8±0.5)×10−2 M−1 s−1, at 25 °C, in CF3COOH, 0.01 mol L−1, μ=0.1 mol L−1 (with CF3COONa).  相似文献   

17.
Alkoxo-phenoxo bridged tetranuclear copper(II) complexes [Cu4L2(O2CC6H4-p-OH)2] (1) and [Cu4L2(O2CC6H4-o-OH)2] (2) containing pentadentate Schiff base ligand N,N-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) (H3L) are prepared and structurally characterized. Crystal structures of the complexes show the covalent linkage between two {Cu2L(O2CR)}(R = C6H4-p-OH, C6H4-o-OH) units through the phenoxo atoms of the Schiff base ligand showing axial/equatorial bonding modes. The Cu(1)-O(2)-Cu(2) alkoxo bridge angle is 131° in 1 and 2. The pendant ortho- and para- OH groups of the three-atom bridging carboxylate ligands show no apparent bonding interactions with the metal or other group(s). The complexes show a d-d band near 635 nm in CH2Cl2. Variable temperature magnetic susceptibility measurements in the temperature range 300-18 K show antiferromagnetically coupled spin system. A theoretical fit of the magnetic data using exchange parameters J1 and J2 for the intradimer and interdimer units of the quasi-linear tetrameric core gave values as: J1=−132,J2=−72 cm−1 for 1 and J1=−167,J2=−67 cm−1 for 2.  相似文献   

18.
Two binuclear iron(III) complexes, [L1FeIII(bpy)FeIIIL1](BPh4)2 (1) and [L2FeIII(bpy)FeIIIL2](BPh4)2 (2), were synthesized and characterized, where H2L1 and H2L2 denote bis(salicylicdeneaminopropyl)methylamine and bis(3-methoxysalicylideneaminopropyl)methylamine, respectively, and bpy denotes 4,4′-bipyridine and BPh4 denotes tetraphenylborate. Complexes 1 and 2 consist of one and two crystallographically unique Fe sites, respectively, while they have a similar binuclear complex-cation [LnFeIII(bpy)FeIIILn]2+ (n = 1, 2) bridged by 4,4′-bipyridine and two tetraphenylborate ions as the counter anions. The magnetic susceptibility measurements of 1 and 2 showed one-step and two-step spin crossover (SCO), respectively. The four saturated six-membered chelate rings at the aminopropyl moieties of 1 exhibit disorder throughout one-step SCO. The two chelate rings of one Fe site of 2 exhibit disorder but the other two of another Fe site do not. The different SCO behaviors of 1 and 2 were ascribed to one and two crystallographically unique Fe sites and the order/disorder at the saturated six-membered chelate rings of aminopropyl moieties.  相似文献   

19.
One-pot reaction of cobalt(II) nitrate hexahydrate Co(NO3)2 · 6H2O with H2salpn (N,N′-bis(salicylidene)-1,3-diaminopropane) in presence of a large excess of sodium azide (NaN3) gives the new Co(III) compound {Na[CoIII(μ-salpn)(μ1,1-N3)2]}n (1), which was characterized by single crystal X-ray diffraction analysis. The crystal structure shows polymeric 1D complex generated by the hexadentate Schiff base salpn2− and two crystallographically different azide ligands. The two nitrogen atoms of the salpn ligand are bonded to the cobalt(III) ion while each phenoxo oxygen atom is bonded to the same Co(III) ion and to two equivalent sodium ions. Each azide ligand acts with the end-on bridging coordination mode between Co(III) and Na(I) ions. The Co(III) ion adopts a distorted octahedral geometry arising from two oxygen and two nitrogen atoms of the salpn ligand and from two nitrogen atoms of the two crystallographically different azide ligands in trans positions. Such [Co(salpn)(N3)2] entities are connected each other by sodium ions through four oxygen atoms of two equivalent Schiff base ligands and two nitrogen atom of the two different azide ligands to generate the 1D structure of 1.  相似文献   

20.
Iron(III) porphinate complexes of phenolate that have NH?O hydrogen bonds on the coordinating oxygen, [FeIII(OEP){O-2,6-(RCONH)2C6H3}] (R = CF3 (1), CH3 (3)) and [FeIII(OEP)(O-2-RCONHC6H4)] (R = CF3 (2), CH3 (4)) (OEP = 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphinato), were synthesized and characterized as models of heme catalase. The presence of NH?O hydrogen bonds was established by their crystal structures and IR shifts of the amide NH band. The crystal structure of 1 shows an extremely elongated Fe-O bond, 1.926(3) Å, compared to 1.887(2) Å in 2 or 1.848(4) Å in [FeIII(OEP)(OPh)]. The NH?O hydrogen bond decreases an electron donation from oxygen to iron, resulting in a long Fe-O bond and a positive redox potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号