首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
Cytoplasmic acetoacetyl-CoA thiolase (acetyl-CoA C-acetyltransferase, EC 2.3.1.9) was partially purified from rat liver. The enzyme was irreversibly inactivated by 4-bromocrotonyl-CoA, but-3-ynoyl-CoA, pent-3-ynoyl-CoA and dec-3-ynoyl-CoA. In the case of the alk-3-ynoyl-CoA esters the potency as alkylating agents of acetoacetyl-CoA thiolase decreased with increased chain length of the alk-3-ynoyl moiety. Advantage was taken of the specific action of alk-3-ynoyl-CoA esters on acetoacetyl-CoA thiolase to show that in a postmitochondrial fraction from rat liver they are effective inhibitors of cholesterol synthesis from sodium [2-14C]acetate under conditions when mevalonate conversion into cholesterol and fatty acid synthesis are unafffected. Short-chain alk-3-ynoic acids have little effect on sterol synthesis, although dec-3-ynoic acid is an effective inhibitor owing to its conversion into the CoA ester by the microsomal fatty acyl-CoA synthetase.  相似文献   

2.
Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.  相似文献   

3.
The effects of various mitochondrial coenzymes and metabolities on the activities of 3-oxoacyl-CoA thiolase (EC 2.3.1.16) and acetoacetyl-CoA thiolase (EC 2.3.1.9) from pig heart were investigated with the aim of elucidating the possible regulation of these two enzymes. Of the compounds tested, acetyl-CoA was the most effective inhibitor of both thiolases. However, 3-oxoacyl-CoA thiolase was more severly inhibited by acetyl-CoA than was acetoacetyl-CoA thiolase. 3-Oxoacyl-CoA thiolase was also significantly inhibited by decanoyl-CoA while acetoacetyl-CoA thiolase was inhibited by 3-hydroxybutyryl-CoA as strongly as it was by acetyl-CoA. All other compounds either did not affect the thiolase activities or only at unphysiologically high concentrations. The inhibition of acetoacetyl-CoA thiolase by acetyl-CoA was linear and apparently noncompetitive with respect to CoASH (Ki = 125 microM) whereas that of 3-oxoacyl-CoA thiolase was nonlinear. However at low concentrations of acetyl-CoA the inhibition of 3-oxoacyl-CoA thiolase was linear competitive with respect to CoASH (Ki = 3.9 microM). It is concluded that 3-oxoacyl-CoA thiolase, but not acetoacetyl-CoA thiolase, will be completely inhibited by acetyl-CoA at concentrations of CoASH and acetyl-CoA which are assumed to exist intramitochondrially at state-4 respiration. It is suggested that fatty acid oxidation in heart muscle at sufficiently high concentrations of plasma free fatty acids is controlled via the regulation of 3-oxoacyl-CoA thiolase by the acetyl-CoA/CoASH ratio which is determined by the rate of the citric acid cycle and consequently by the energy demand of the tissue.  相似文献   

4.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

5.
Phenylalanine chloromethyl ketone covalently attached to porous glass beads was synthesized to serve as a solid-phase active site directed inhibitor of chymotrypsin-like proteolytic enzymes. The solid-phase reagent inhibited 20 nmol of bovine chymotrypsin per gram of glass and covalently bound 30 nmol of protein per gram of glass. Sepharose-bound lysine chloromethyl ketones were synthesized to serve as inhibitors of trypsin-like enzymes. Sepharose-MethionylLysyl chloromethyl ketone inactivated and bound about 6.8 nmol of enzyme per ml of settled gel. In a preliminary experiment, a cyanogen bromide cleavage of the methionine residues showed that it should be possible to release all peptides but the peptide containing the active-site histidine. The immobilized trypsin was also reduced, carboxymethylated and digested with chymotrypsin. The potential of the solid-phase approach is in the isolation of a specific serine proteinase and in the sequence determination of residues surrounding the active-site histidine.  相似文献   

6.
Acetoacetyl-CoA specific thiolases catalyse the cleavage of acetoacetyl-CoA into two molecules of acetyl-CoA and the synthesis (reverse reaction) of acetoacetyl-CoA. The formation of acetoacetyl-CoA is the first step in cholesterol and ketone body synthesis. In this report we describe the identification of a novel acetoacetyl-CoA thiolase and its purification from isolated rat liver peroxisomes by column chromatography. The enzyme, which is a homotetramer with a subunit molecular mass of 42 kDa, could be distinguished from the cytosolic and mitochondrial acetoacetyl-CoA thiolases by its chromatographic behaviour, kinetic characteristics and partial internal amino-acid sequences. The enzyme did not catalyse the cleavage of medium or long chain 3-oxoacyl-CoAs. The enzyme cross-reacted with polyclonal antibodies raised against cytosolic acetoacetyl-CoA thiolase. The latter property was exploited to confirm the peroxisomal localization of the novel thiolase in subcellular fractionation experiments. The peroxisomal acetoacetyl-CoA thiolase most probably catalyses the first reaction in peroxisomal cholesterol and dolichol synthesis. In addition, its presence in peroxisomes along with the other enzymes of the ketogenic pathway indicates that the ketogenic potential of peroxisomes needs to be re-evaluated.  相似文献   

7.
Two genes encoding acetoacetyl-CoA thiolase (thiolase I; EC 2.3.1.9), whose localization in peroxisomes was first found with an n-alkane-utilizing yeast, Candida tropicalis, were isolated from the lambda EMBL3 genomic DNA library prepared from the yeast genomic DNA. Nucleotide sequence analysis revealed that both genes contained open reading frames of 1209 bp corresponding to 403 amino acid residues with methionine at the N-terminus, which were named as thiolase IA and thiolase IB. The calculated molecular masses were 41,898 Da for thiolase IA and 41,930 Da for thiolase IB. These values were in good agreement with the subunit mass of the enzyme purified from yeast peroxisomes (41 kDa). There was an extremely high similarity between these two genes (96% of nucleotides in the coding regions and 98% of amino acids deduced). From the amino acid sequence analysis of the purified peroxisomal enzyme, it was shown that thiolase IA and thiolase IB were expressed in peroxisomes at an almost equal level. Both showed similarity to other thiolases, especially to Saccharomyces uvarum cytosolic acetoacetyl-CoA thiolase (65% amino acids of thiolase IA and 64% of thiolase IB were identical with this thiolase). Considering the evolution of thiolases, the C. tropicalis thiolases and S. uvarum cytosolic acetoacetyl-CoA thiolase are supposed to have a common origin. It was noticeable that the carboxyl-terminal regions of thiolases IA and IB contained a putative peroxisomal targeting signal, -Ala-Lys-Leu-COOH, unlike those of other thiolases reported hitherto.  相似文献   

8.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

9.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

10.
The inhibitory effects of various fatty acids on topoisomerases were examined, and their structure activity relationships and mechanism of action were studied. Saturated fatty acids (C6:0 to C22:0) did not inhibit topoisomerase I, but cis-unsaturated fatty acids (C16:1 to C22:1) with one double bond showed strong inhibition of the enzyme. The inhibitory potency depended on the carbon chain length and the position of the double bond in the fatty acid molecule. The trans-isomer, methyl ester and hydroxyl derivative of oleic acid had no or little inhibitory effect on topoisomerases I and II. Among the compounds studied petroselinic acid and vaccenic acid (C18:1) with a cis-double bond were the potent inhibitors. Petroselinic acid was a topoisomerase inhibitor of the cleavable complex-nonforming type and acted directly on the enzyme molecule in a noncompetitive manner without DNA intercalation.  相似文献   

11.
Acetoacetyl coenzyme A (acetoacetyl-CoA) thiolase, an enzyme required for short-chain fatty acid degradation, has been purified to near homogeneity from Caulobacter crescentus. The relative heat stability of this enzyme allowed it to be separated from beta-ketoacyl-CoA thiolase. The purification scheme minus the heating step also permitted the copurification of crotonase and 3-hydroxyacyl-CoA dehydrogenase. These activities are in a multienzyme complex in Escherichia coli, but a similar complex was not observed in C. crescentus. Instead, separate proteins differing in enzymatic activity were detected, analogous to the beta-oxidation enzymes that have been isolated from Clostridium acetobutylicum and from mitochondria of higher eucaryotes. In these cells, as appears to be the case with C. crescentus, the individual enzymes form multimers of identical subunits.  相似文献   

12.
H Schulz 《Biochemistry》1983,22(8):1827-1832
The metabolism of 4-pentenoic acid, a hypoglycemic agent and inhibitor of fatty acid oxidation, has been studied in rat heart mitochondria. Confirmed was the conversion of 4-pentenoic acid to 2,4-pentadienoyl coenzyme A (CoA), which either is directly degraded via beta-oxidation or is first reduced in a NADPH-dependent reaction before it is further degraded by beta-oxidation. At pH 6.9, the NADPH-dependent reduction of 2,4-pentadienoyl-CoA proceeds 10 times faster than its degradation by beta-oxidation. At pH 7.8, this ratio is only 2 to 1. The direct beta-oxidation of 2,4-pentadienoyl-CoA leads to the formation of 3-keto-4-pentenoyl-CoA, which is highly reactive and spontaneously converts to another 3-ketoacyl-CoA derivative (compound X). 3-Keto-4-pentenoyl-CoA is a poor substrate of 3-ketoacyl-CoA thiolase (EC 2.3..1.16) whereas compound X is not measurably acted upon by this enzyme. The effects of several metabolites of 4-pentenoic acid on the activity of 3-ketoacyl-CoA thiolase were studied. 3,4-Pentadienoyl-CoA is a weak inhibitor of this enzyme that is protected against the inhibition by acetoacetyl-CoA. The most effective inhibitor of 3-ketoacyl-CoA thiolase was found to be 3-keto-4-pentenoyl-CoA, which inhibits the enzyme in both a reversible and irreversible manner. The reversible inhibition is possibly a consequence of the inhibitor being a poor substrate of 3-ketoacyl-CoA thiolase. It is concluded that 4-pentenoic acid is metabolized in mitochondria by two pathways. The minor yields 3-keto-4-pentenoyl-CoA, which acts both as a reversible and as a irreversible inhibitor of 3-ketoacyl-CoA thiolase and consequently of fatty acid oxidation.  相似文献   

13.
Acetate has been found as an endogenous metabolite of beta-oxidation of fatty acids in liver. In order to investigate the regulation of acetate generation in liver mitochondria, we attempted to purify a mitochondrial acetyl-CoA hydrolase in rat liver. This acetyl-CoA-hydrolyzing activity in isolated mitochondria was induced by the treatment of rats with di(2-ehtylhexyl)phthalate (DEHP), a peroxisome proliferator which induces expression of several peroxisomal and mitochondrial enzymes involved in beta-oxidation of fatty acids. The purified enzyme was 43-kDa in molecular mass by SDS/PAGE. Internal amino acid sequencing of this enzyme revealed that it was identical with mitochondrial 3-ketoacyl-CoA thiolase, suggesting that this enzyme has two kinds of activities, 3-ketoacyl-CoA thiolase and acetyl-CoA hydrolase activities. Kinetic studies clearly indicated that this enzyme had the both activities and each activity was inhibited by the substrates of the other activity, that is, 3-ketoacyl-CoA thiolase activity was inhibited by acetyl-CoA, on the other hand, acetyl-CoA hydrolase activity was inhibited by acetoacetyl-CoA in a competitive manner. These findings suggested that acetate generation in liver mitochondria is a side reaction of this known enzyme, 3-ketoacyl-CoA thiolase, and this enzyme may regulate its activities depending on each substrate level.  相似文献   

14.
The compound L-660, 631 (2-oxo-5-(1-hydroxy-2,4,6-heptatriynyl)-1,3-dioxolane-4 heptanoic acid), a natural product isolated from an Actinomycete culture, was found to inhibit rat liver cytosolic acetoacetyl-CoA thiolase, the first step in the cholesterol biosynthesis pathway, with an IC50 of 1.0 x 10(-8) M. The inhibitor had no effect on other sulfhydryl containing enzymes of lipid synthesis such as HMG-CoA synthase, HMG-CoA reductase, and fatty acid synthase. When tested in cultured human liver Hep G2 cells the compound inhibited the incorporation of 14C-acetate and 14C-octanoate into sterols 56% and 48% respectively at 3 x 10(-6) M with no effect on fatty acid synthesis. No noticeable effect was seen on fatty acid biosynthesis. This strongly suggests that the locus of inhibition of acetate incorporation into sterols found with this compound is the acetoacetyl-CoA thiolase step in the cholesterol biosynthesis pathway.  相似文献   

15.
Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation   总被引:1,自引:0,他引:1  
Catalase activity was inhibited by aminotriazole administration to rats in order to evaluate the influence of catalase on the peroxisomal fatty acyl-CoA beta-oxidation system. 2 h after the administration of aminotriazole, peroxisomes were prepared from rat liver, and the activities of catalase, the beta-oxidation system and individual enzymes of beta-oxidation (fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase) were determined. Catalase activity was decreased to about 2% of the control. Among the individual enzymes of the beta-oxidation system, thiolase activity was decreased to 67%, but the activities of fatty acyl-CoA oxidase, crotonase and beta-hydroxybutyryl-CoA dehydrogenase were almost unchanged. The activity of the peroxisomal beta-oxidation system was assayed by measuring palmitoyl-CoA-dependent NADH formation, and the activity of the purified peroxisome preparation was found to be almost unaffected by the administration of aminotriazole. The activity of the system in the aminotriazole-treated preparation was, however, significantly decreased to 55% by addition of 0.1 mM H2O2 to the incubation mixture. Hydrogen peroxide (0.1 mM) reduced the thiolase activity of the aminotriazole-treated peroxisomes to approx. 40%, but did not affect the other activities of the system. Thiolase activity of the control preparation was decreased to 70% by addition of hydrogen peroxide (0.1 mM). The half-life of 0.1 mM H2O2 added to the thiolase assay mixture was 2.8 min in the case of aminotriazole-treated peroxisomes, and 4 s in control peroxisomes. The ultraviolet spectrum of acetoacetyl-CoA (substrate of thiolase) was clearly changed by addition of 0.1 mM H2O2 to the thiolase assay mixture without the enzyme preparation; the absorption bands at around 233 nm (possibly due to the thioester bond of acetoacetyl-CoA) and at around 303 nm (due to formation of the enolate ion) were both significantly decreased. These results suggest that H2O2 accumulated in peroxisomes after aminotriazole treatment may modify both thiolase and its substrate, and consequently suppress the fatty acyl-CoA beta-oxidation. Therefore, catalase may protect thiolase and its substrate, 3-ketoacyl-CoA, by removing H2O2, which is abundantly produced during peroxisomal enzyme reactions.  相似文献   

16.
The effects of oleic acid on the activities of cytosolic HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase, AcAc-CoA (acetoacetyl-CoA) thiolase and AcAc-CoA synthetase, as well as microsomal HMG-CoA reductase, all enzymes in the pathway of cholesterol biosynthesis, were studied in the isolated perfused rat liver. Oleic acid bound to bovine serum albumin, or albumin alone, was infused for 4 h at a rate sufficient to sustain an average concentration of 0.61 +/- 0.05 mM fatty acid during the perfusion. Hepatic cytosol and microsomal fractions were isolated at the termination of the perfusion. Oleic acid simultaneously increased the activities of the cytosolic cholesterol-biosynthetic enzymes 1.4-2.7-fold in livers from normal fed rats and from animals fasted for 24 h. These effects were accompanied by increased net secretion by the liver of cholesterol and triacylglycerol in the very-low-density lipoprotein (VLDL). We confirmed the observations reported previously from this laboratory of the stimulation by oleic acid of microsomal HMG-CoA reductase. In cytosols from perfused livers, the increase in AcAc-CoA thiolase activity was characterized by an increase in Vmax. without any change in the apparent Km of the enzyme for AcAc-CoA. In contrast, oleic acid decreased the Km of HMG-CoA synthase for Ac-CoA, without alteration of the Vmax. of the enzyme. The Vmax. of AcAc-CoA synthetase was increased by oleic acid, and there was a trend towards a small increase in the Km of the enzyme for acetoacetate. These data allow us to conclude that the enzymes that supply the HMG-CoA required for hepatic cholesterogenesis are stimulated, as is HMG-CoA reductase, by a physiological substrate, fatty acid, that increases rates of hepatic cholesterol synthesis and cholesterol secretion. Furthermore, we suggest that these effects of fatty acid on hepatic cholesterol metabolism result from stimulation of secretion of triacylglycerol in the VLDL by fatty acids, and the absolute requirement of cholesterol as an important structural surface component of the VLDL necessary for transport of triacylglycerol from the liver.  相似文献   

17.
Diazomethyl ketone and chloromethyl ketone analogs of thyrotropin releasing hormones have been synthesized and studied for their inhibitory effects on thyrotropin releasing hormone-induced release of radioactive 125I-labelled hormones from the thyroid gland of eight-week old male Long-Evans rats. When Long-Evans rats were pretreated with thyrotropin releasing hormone diazomethyl ketone (TRH-DMK) or the chloromethyl ketone derivative (TRH-CMK), a dose-related inhibition of thyrotropin releasing hormone-induced 125I release was observed which could be partially reversed by thyrotropin stimulating hormone (TSH). The diazomethyl ketone was a more effective inhibitor than the chloromethyl ketone. These compounds may act as an active-site directed antagonists whose effects are unique to the hypothalamo-pituitary-thyroid system.  相似文献   

18.
分析了丛毛单胞菌(Comamonas sp.)CNB-1菌株在不同条件下合成聚羟基烷酸(polyhydroxyalkanoic acids,PHAs)的组分和含量,同时克隆了与PHA合成相关的基因。结果表明,该菌可以多种短链有机酸及醇类为碳源合成PHA多聚物或共聚物,以戊酸和1,4-丁二醇为底物时,可达菌体干重的57%;同时发现小分子醇类的存在能显著促进PHA的合成,推测与醇类氧化过程中提供了更多的还原力有关。为了克隆相关基因,利用已知phaC的保守区简并引物筛选基因组文库,将得到的阳性克隆质粒测序,发现phaC、phaA、phaB组成一个基因簇phaC-A-B。将phaC、phaA、phaB连接到pET载体在E.coli中共表达,重组E.coli菌株能合成PHA;将这3个基因单独连接到pET载体,在E.coli中表达后检测到相应酶活,分别约为原始菌株的4.1、71和2882倍。  相似文献   

19.
Rabbit muscle pyruvate kinase was irreverisbly inactivated by 5-chloro-4-oxopentanoic acid with a pKa of 9.2. The inhibition was time-dependent and was related to the 5-chloro-4-oxopentanoic acid concentration. Analysis of the kinetics of inhibition showed that the binding of the inhibitor showed positive co-operativity (n = 1.5 +/- 0.2). Inhibition of pyruvate kinase by 5-chloro-4-oxopentanoic acid was prevented by ligands which bind to the active site. Their effectiveness was placed in the order Mg2+ greater than phosphoenolpyruvate greater than ATP greater than ADP greater than pyruvate. Inhibitor-modified pyruvate kinase was unable to catalyse the detritiation of [3-(3)H]pyruvate in the ATP-promoted reaction, but it did retain 5-10% of the activity with either phosphate or arsenate as promoters. 5-Chlor-4-oxo-[3,5-(3)H]pentanoic acid was covalently bound to pyruvate kinase and demonstrated a stoicheiometry of 1 mol of inhibitor bound per mol of pyruvate kinase protomer. The incorporation of the inhibitor and the loss of enzyme was proportional. These results are discussed in terms of 5-chloro-4-oxopentanoic acid alkylating a functional group in the phosphoryl overlap region of the active site, and a model is presented in which this compound alkylates an active-site thiol in a reaction that is controlled by a more basic group at the active site.  相似文献   

20.
In isolated rat hepatocytes flavaspidic acid, a competitor with free fatty acids for the fatty-acid-binding-protein, decreased the uptake of oleic acid and triglyceride synthesis but stimulated the formation of CO2 and ketone bodies from oleic acid. Flavaspidic acid had no effect on the utilization of octanoic acid. Stimulation of the microsomal fatty-acid-activating enzyme by the fatty-acid-binding protein was reversed by flavaspidic acid. In contrast, the binding protein inhibited the mitochondrial fatty-acid-activating enzyme. Flavaspidic acid not only prevented this inhibition but actually stimulated the enzyme activity. The results indicate that the cytosol fatty-acid-binding protein directs the metabolism of long chain fatty acids toward esterification as well as enhancing their cellular uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号