首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Arabidopsis thaliana pectin methylesterase that was not predicted to contain any signaling sequence was produced in E. coli and purified using a His tag added at its N-terminus. The enzyme demethylesterified Citrus pectin with a Km of 0.86 mg/ml. The enzyme did not require salt for activity and was found to be relatively temperature-sensitive. The precipitation of enzyme-treated pectin by CaCl2 suggested that the enzyme had a blockwise mode of pectin demethylesterification. A purified kiwi (Actinidia chinensis) pectin methylesterase inhibitor had no effect on the activity of the enzyme whereas it strongly inhibited a flax pectin methylesterase. A model of the protein structure revealed that an extra amino acid sequence in this particular Arabidopsis pectin methylesterase could form a ss-strand outside the core structure, which might be preventing the inhibitor from binding the protein.  相似文献   

2.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

3.
The filamentous fungus Cochliobolus carbonum produces endo-α1,4-polygalacturonase (endoPG), exo-α1,4-polygalacturonase (exoPG), and pectin methylesterase when grown in culture on pectin. Residual activity in a pgn1 mutant (lacking endoPG) was due to exoPG activity, and the responsible protein has now been purified. After chemical deglycosylation, the molecular mass of the purified protein decreased from greater than 60 to 45 kDa. The gene that encodes exoPG, PGX1, was isolated with PCR primers based on peptide sequences from the protein. The product of PGX1, Pgx1p, has a predicted molecular mass of 48 kDa, 12 potential N-glycosylation sites, and 61% amino acid identity to an exoPG from the saprophytic fungus Aspergillus tubingensis. Strains of C. carbonum mutated in PGX1 were constructed by targeted gene disruption and by gene replacement. Growth of pgx1 mutant strains on pectin was reduced by ca. 20%, and they were still pathogenic on maize. A double pgn1/pgx1 mutant strain was constructed by crossing. The double mutant grew as well as the pgx1 single mutant on pectin and was still pathogenic despite having less than 1% of total wild-type PG activity. Double mutants retained a small amount of PG activity with the same cation-exchange retention time as Pgn1p and also pectin methylesterase and a PG activity associated with the mycelium. Continued growth of the pgn1/pgx1 mutant on pectin could be due to one or more of these residual activities.  相似文献   

4.
Rhamnogalacturonan acetylesterase, able to specifically hydrolyse the acetyl asters present in modified hairy (ramified) regions (MHR) of apple pectin, was identified. The enzyme removed about 70% of the total acetyl groups in MHR. This acetylesterase did not cause the release of acetyl groups from a range of other acetylated substrates, either synthetic or extracted from plants, including the acetylated smooth regions present in beet pectin. Pretreatment of pectic polysaccharides in order to remove arabinose side chains had no effect on the acetyl release, wor was an effect found on the rate or degree of acetyl release, when the purified acetylesterase was combined with pectolytic enzymes, pectin methylesterase or arabinanases. Correspondence to: A. G. J. Voragen  相似文献   

5.
The hemibiotrophic basidiomycete fungus Moniliophthora perniciosa, the causal agent of Witches’ broom disease (WBD) in cacao, is able to grow on methanol as the sole carbon source. In plants, one of the main sources of methanol is the pectin present in the structure of cell walls. Pectin is composed of highly methylesterified chains of galacturonic acid. The hydrolysis between the methyl radicals and galacturonic acid in esterified pectin, mediated by a pectin methylesterase (PME), releases methanol, which may be decomposed by a methanol oxidase (MOX). The analysis of the M. pernciosa genome revealed putative mox and pme genes. Real-time quantitative RT-PCR performed with RNA from mycelia grown in the presence of methanol or pectin as the sole carbon source and with RNA from infected cacao seedlings in different stages of the progression of WBD indicate that the two genes are coregulated, suggesting that the fungus may be metabolizing the methanol released from pectin. Moreover, immunolocalization of homogalacturonan, the main pectic domain that constitutes the primary cell wall matrix, shows a reduction in the level of pectin methyl esterification in infected cacao seedlings. Although MOX has been classically classified as a peroxisomal enzyme, M. perniciosa presents an extracellular methanol oxidase. Its activity was detected in the fungus culture supernatants, and mass spectrometry analysis indicated the presence of this enzyme in the fungus secretome. Because M. pernciosa possesses all genes classically related to methanol metabolism, we propose a peroxisome-independent model for the utilization of methanol by this fungus, which begins with the extracellular oxidation of methanol derived from the demethylation of pectin and finishes in the cytosol.  相似文献   

6.
7.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

8.
Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.  相似文献   

9.
The secretion of extracellular pectinases, among which there are least six isoenzymes of pectate lyase and one pectin methylesterase, allows the phytopathogenic bacterium Erwinia chrysanthemi to degrade pectin. A gene coding for a novel pectin methylesterase has been cloned from an E. chrysanthemi strain 3937 gene library. This gene, pemB , codes for a 433-amino-acid protein. The PemB N-terminal region has the characteristics of lipoprotein signal sequences. We have shown that the PemB precursor is processed and that palmitate is incorporated into the mature protein. The PemB lipoprotein is not released into the extracellular medium and is localized in the outer membrane. The PemB sequence presents homology with other pectin methylesterases from bacterial and plant origin. pemB -like proteins were detected in four other E. chrysanthemi strains but not in Erwinia carotovora strains. PemB was overproduced in Escherichia coli and purified to homogeneity. PemB activity is strongly increased by non-ionic detergents. The enzyme is more active on methylated oligogalacturonides than on pectin, and it is necessary for the growth of the bacteria on oligomeric substrates. PemB is more probably involved in the degradation of methylated oligogalacturonides present in the periplasm of the bacteria, rather than in a direct action on extracellular pectin. pemB expression is inducible in the presence of pectin and is controlled by the negative regulator KdgR.  相似文献   

10.
Spániková S  Biely P 《FEBS letters》2006,580(19):4597-4601
The cellulolytic system of the wood-rotting fungus Schizophyllum commune contains an esterase that hydrolyzes methyl ester of 4-O-methyl-d-glucuronic acid. The enzyme, called glucuronoyl esterase, was purified to electrophoretic homogeneity from a cellulose-spent culture fluid. Its substrate specificity was examined on a number of substrates of other carbohydrate esterases such as acetylxylan esterase, feruloyl esterase and pectin methylesterase. The glucuronoyl esterase attacks exclusively the esters of MeGlcA. The methyl ester of free or glycosidically linked MeGlcA was not hydrolysed by other carbohydrate esterases. The results suggest that we have discovered a new type of carbohydrate esterase that might be involved in disruption of ester linkages connecting hemicellulose and lignin in plant cell walls.  相似文献   

11.
A significant problem in production of fruit juices for human consumption is auto-clarification, where enzyme catalyzes pectin demethylation resulting in loss of the ‘‘natural” cloudy appearance of juices. To overcome this problem, a plant inhibitor protein which blocks the action of pectin methylesterase has been used. In this paper, expression of recombinant kiwi pectin methylesterase inhibitor (PMEI) was carried out in Escherichia coli, and the target protein was expressed in the form of inclusion bodies. The expression level reached 46% of total cell protein. Then the fusion protein was purified by nickel ion metal affinity chromatography, and the purity was finally up to 98%. After refolding in GSH/GSSG redox system, recombinant PMEI not only could efficiently inhibit PMEs from eight different plants, but could remain effective inhibitor activity in the pH 3.0–10.0 and 20–40 °C. Thus, recombinant PMEI has potential application in the production of fruit juices product industry.  相似文献   

12.
Plant virus-encoded movement proteins promote viral spread between plant cells via plasmodesmata. The movement is assumed to require a plasmodesmata targeting signal to interact with still unidentified host factors presumably located on plasmodesmata and cell walls. The present work indicates that a ubiquitous cell wall-associated plant enzyme pectin methylesterase of Nicotiana tabacum L. specifically binds to the movement protein encoded by tobacco mosaic virus. We also show that pectin methylesterase is an RNA binding protein. These data suggest that pectin methylesterase is a host cell receptor involved in cell-to-cell movement of tobacco mosaic virus.  相似文献   

13.
A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.  相似文献   

14.
In earlier investigations, it has been demonstrated that Pseudocercosporella herpotrichoides (Fron) Deighton is capable of producing pectolytic and cellulolytic enzymes as well as hemicellulases in vitro. The investigation of enzyme activity in extracts from wheat plants infected with P. herpotrichoides (isolates 21e and R6) and from non-infected plants revealed the activity of the following enzymes: pectin methylesterase (PME), polymethylgalacturonase (PMG), pectin lyase (PL), carboxymethylcellulase (CMCase), xylanase and arabanase. Compared to non-infected plants, the enzyme activity in infected plants was considerably higher; in some experiments, only traces of enzyme activity could be found in control plants. The difference in the enzyme activity in infected as compared to non-infected plants was, in most cases, statistically significant, especially beginning at the end of the second week after inoculation.
The enzyme activity depended on the temperature during plant cultivation; with the exception of pectin methylesterase (PME), the activity of all investigated enzymes increased with temperature and the highest activity was found in plants grown at 20°C. The highest PME activity was measured in plants grown at 10°C; the activity of this enzyme was generally lower at 15 and 20°C.  相似文献   

15.
Summary Aspergillus carbonarius produces exocellular pectinolytic enzymes which are active within the acid range of pH and therefore are useful in commercial processing of fruits. The fungus produces pectin methylesterase, a viscosity-reducing enzyme, and exo-polygalacturonase; but it does not produce transeliminases. The optimum pH range and temperature for the above-mentioned enzyme activities are 3.5 to 4.0 and 50°, respectively. Enzymic hydrolysates of both pectin and pectic acid contained only monogalacturonate. The enzymes are stable at pH 3.0 to 4.5 at room temperature (20–30°) for more than a month. A preliminary purification yielded two fractions, both of which showed viscosity-reducing as well as saccharogenic activities. Pectin methylesterase was unaffected when treated with 6M urea for 5 hr at pH 6.7 and 25°, whereas polygalacturonase and viscosityreducing activities were completely inactivated.  相似文献   

16.
An extracellular protein complex was isolated from the supernatant of a pectin-limited continuous culture of Clostridium thermosaccharolyticum Haren. The complex possessed both pectin methylesterase (EC 3.1.1.11) and exo-poly-alpha-galacturonate hydrolase (EC 3.2.1.82) activity and produced digalacturonate from the nonreducing end of the pectin chain. The protein consisted of 230- and 25-kDa subunits. The large subunit contained 10% (wt/wt) sugars (N-acetylgalactosamine and galactose). Under physiological conditions both activities acted in a coordinated manner: the ratio between methanol and digalacturonate released during degradation was constant and equal to the degree of esterification of the pectin used. Prolonged incubation of the enzyme with pectin led to a nondialyzable fraction that was enriched in neutral sugars, such as arabinose, rhamnose, and galactose; the high rhamnose/galacturonic acid ratio was indicative of hairy region-like structures. The smallest substrate utilized by the hydrolase was a tetragalacturonate. Vmax with oligogalacturonates increased with increasing chain length. The Km and Vmax for the polygalacturonate hydrolase with citrus pectate as a substrate were 0.8 g liter-1 and 180 mumol min-1 mg of protein-1, respectively. The Km and Vmax for the esterase with citrus pectin as a substrate were 1.2 g liter-1 and 440 mumol min-1 mg of protein-1, respectively. The temperature optima for the hydrolase and esterase were 70 and 60 degrees C, respectively. Both enzyme activities were stable for more than 1 h at 70 degrees C. The exo-polygalacturonate hydrolase of Clostridium thermosulfurogenes was partially purified while the methylesterase was also copurified.  相似文献   

17.
An indigenously isolated fungal strain Aspergillus flavus MTCC 10938 was subjected to pectin lyase (PNL) production under submerged fermentation conditions. The enzyme was purified to homogeneity from the culture filtrate of the fungus involving concentration by ultrafiltration, anion exchange chromatography on DEAE cellulose and gel filtration chromatography on Sephadex G-100. The purified PNL gave a single protein band in SDS-PAGE analysis with a relative molecular mass corresponding to 50 kDa. Using citrus pectin as the substrate the K m and k cat values of the enzyme were obtained as 1.7 mg/ml and 66 s?1, respectively. The optimum pH of the purified PNL from A. flavus MTCC 10938 was 8.0 and up to 90% of its activity retained in the pH range from 3.0 to 11.0 after 24 h incubation. The optimum temperature of the purified enzyme was revealed at 55°C and it was completely stable up to 40°C when exposed for 30 min. The purified A. flavus MTCC 10938 PNL showed efficient retting of Crotalaria juncea fibres.  相似文献   

18.
The enzymes pectin methylesterase and polygalacturonate hydrolase, which are responsible for the initial steps of pectin degradation by Clostridium thermosaccharolyticum, were shown to be induced on the polymeric substrates pectin and pectate, as well as on oligogalacturonates, and to be repressed in the presence of glucose. The digalacturonate and trigalacturonate produced by the extracellular pectin methylesterase-polygalacturonate hydrolase complex were transported across the cytoplasmic membrane and hydrolyzed by an inducible oligogalacturonate hydrolase to galacturonate. The oligogalacturonate hydrolase was separated from the polygalacturonate hydrolase and characterized. Its temperature optimum was 65°C, and its pH optimum was 6. The native molecular size was 90 kDa, and the enzyme was stable for more than 1 h at 65°C. The maximum reaction rate on oligomers decreased with the increasing degree of polymerization. Galacturonate was released by hydrolysis from the nonreducing end of the oligomer. The amounts of pectinolytic enzymes produced were all strictly correlated to the amount of biomass formed. Galacturonate was metabolized via a modified Entner-Doudoroff route.  相似文献   

19.
《Fungal biology》2014,118(5-6):507-515
Lignocellulose is the major component of plant cell walls and it represents a great source of renewable organic matter. One of lignocellulose constituents is pectin. Pectin is composed of two basic structures: a ‘smooth’ region and a ‘hairy’ region. The ‘smooth’ region (homogalacturonan) is a linear polymer of galacturonic acid residues with α-(1→4) linkages, substituted by methyl and acetyl residues. The ‘hairy’ region is more complex, containing xylogalacturonan and rhamnogalacturonans I and II. Among the enzymes which degrade pectin (pectinases) is pectin lyase (E.C. 4.2.2.10). This enzyme acts on highly esterified homogalacturonan, catalysing the cleavage of α-(1→4) glycosidic bonds between methoxylated residues of galacturonic acid by means of β-elimination, with the formation of 4,5-unsaturated products. In this work, the gene and cDNA of a pectin lyase from Penicillium purpurogenum have been sequenced, and the cDNA has been expressed in Pichia pastoris. The gene is 1334 pb long, has three introns and codes for a protein of 376 amino acid residues. The recombinant enzyme was purified to homogeneity and characterized. Pectin lyase has a molecular mass of 45 kDa as determined by SDS-PAGE. It is active on highly esterified pectin, and decreases 40 % the viscosity of pectin with a degree of esterification ≥85 %. The enzyme showed no activity on polygalacturonic acid and pectin from citrus fruit 8 % esterified. The optimum pH and temperature for the recombinant enzyme are 6.0 and 50 °C, respectively, and it is stable up to 50 °C when exposed for 3 h. A purified pectin lyase may be useful in biotechnological applications such as the food industry where the liberation of toxic methanol in pectin degradation should be avoided.  相似文献   

20.
Most structures of neutral lipases and esterases have been found to adopt the common alpha/beta hydrolase fold and contain a catalytic Ser-His-Asp triad. Some variation occurs in both the overall protein fold and in the location of the catalytic triad, and in some enzymes the role of the aspartate residue is replaced by a main-chain carbonyl oxygen atom. Here, we report the crystal structure of pectin methylesterase that has neither the common alpha/beta hydrolase fold nor the common catalytic triad. The structure of the Erwinia chrysanthemi enzyme was solved by multiple isomorphous replacement and refined at 2.4 A to a conventional crystallographic R-factor of 17.9 % (R(free) 21.1 %). This is the first structure of a pectin methylesterase and reveals the enzyme to comprise a right-handed parallel beta-helix as seen in the pectinolytic enzymes pectate lyase, pectin lyase, polygalacturonase and rhamnogalacturonase, and unlike the alpha/beta hydrolase fold of rhamnogalacturonan acetylesterase with which it shares esterase activity. Pectin methylesterase has no significant sequence similarity with any protein of known structure. Sequence conservation among the pectin methylesterases has been mapped onto the structure and reveals that the active site comprises two aspartate residues and an arginine residue. These proposed catalytic residues, located on the solvent-accessible surface of the parallel beta-helix and in a cleft formed by external loops, are at a location similar to that of the active site and substrate-binding cleft of pectate lyase. The structure of pectin methylesterase is an example of a new family of esterases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号