首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclostreptin (1), a natural product from Streptomyces sp. 9885, irreversibly stabilizes cellular microtubules, causes cell cycle arrest, evades drug resistance mediated by P-glycoprotein in a tumor cell line and potently inhibits paclitaxel binding to microtubules, yet it only weakly induces tubulin assembly. In trying to understand this paradox, we observed irreversible binding of synthetic cyclostreptin to tubulin. This results from formation of covalent crosslinks to beta-tubulin in cellular microtubules and microtubules formed from purified tubulin in a 1:1 total stoichiometry distributed between Thr220 (at the outer surface of a pore in the microtubule wall) and Asn228 (at the lumenal paclitaxel site). Unpolymerized tubulin was only labeled at Thr220. Thus, the pore region of beta-tubulin is an undescribed binding site that (i) elucidates the mechanism by which taxoid-site compounds reach the kinetically unfavorable lumenal site and (ii) explains how taxoid-site drugs induce microtubule formation from dimeric and oligomeric tubulin.  相似文献   

2.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

3.
For anticancer drug therapy, it is critical to kill those cells with highest tumorigenic potential, even when they comprise a relatively small fraction of the overall tumor cell population. We have used the established NCI/DTP 60 cell line growth inhibition assay as a platform for exploring the relationship between chemical structure and growth inhibition in both tumorigenic and non-tumorigenic cancer cell lines. Using experimental measurements of “take rate” in ectopic implants as a proxy for tumorigenic potential, we identified eight chemical agents that appear to strongly and selectively inhibit the growth of the most tumorigenic cell lines. Biochemical assay data and structure-activity relationships indicate that these compounds act by inhibiting tubulin polymerization. Yet, their activity against tumorigenic cell lines is more selective than that of the other microtubule inhibitors in clinical use. Biochemical differences in the tubulin subunits that make up microtubules, or differences in the function of microtubules in mitotic spindle assembly or cell division may be associated with the selectivity of these compounds.  相似文献   

4.
Although cancer cells often harbor supernumerary centrosomes, they form pseudo-bipolar spindles via centrosome clustering, instead of lethal multipolar spindles, and thus avoid cell death. Kinesin-14 HSET/KIFC1 is a crucial protein involved in centrosome clustering. Accordingly, a compound that targets HSET could potentially inhibit cancer cell proliferation in a targeted manner. Here, we report three natural compounds derived from Solidago altissima that restored the growth of fission yeast cells exhibiting lethal HSET overproduction (positive screening), namely solidagonic acid (SA) (1), kolavenic acid analog (KAA: a stereo isomer at C-9 and C-10 of 6β-tigloyloxykolavenic acid) (2), and kolavenic acid (KA) (3). All three compounds suppressed fission yeast cell death and enabled reversion of the mitotic spindles from a monopolar to bipolar morphology. Compound 2, which exerted the strongest activity against HSET-overproducing yeast cells, also inhibited centrosome clustering in MDA-MB-231 human breast adenocarcinoma cells, which contained large numbers of supernumerary centrosomes. These natural compounds may be useful as bioprobes in studies of HSET function. Moreover, compound 2 is a prime contender in the development of novel agents for cancer treatment.  相似文献   

5.
Paclitaxel (Taxol) and the epothilones are antimitotic agents that promote the assembly of mammalian tubulin and stabilization of microtubules. The epothilones competitively inhibit the binding of paclitaxel to mammalian brain tubulin, suggesting that the two types of compounds share a common binding site in tubulin, despite the lack of structural similarities. It is known that paclitaxel does not stabilize microtubules formed in vitro from Saccharomyces cerevisiae tubulin; thus, it would be expected that the epothilones would not affect yeast microtubules. However, we found that epothilone A and B do stimulate the formation of microtubules from purified yeast tubulin. In addition, epothilone B severely dampens the dynamics of yeast microtubules in vitro in a manner similar to the effect of paclitaxel on mammalian microtubules. We used current models describing paclitaxel and epothilone binding to mammalian beta-tubulin to explain why paclitaxel apparently fails to bind to yeast tubulin. We propose that three amino acid substitutions in the N-terminal region and at position 227 in yeast beta-tubulin weaken the interaction of the 3'-benzamido group of paclitaxel with the protein. These results also indicate that mutagenesis of yeast tubulin could help define the sites of interaction with paclitaxel and the epothilones.  相似文献   

6.
The cytoskeleton of eukaryotic cells relies on microtubules to perform many essential functions. We have previously shown that, in spite of the overall conservation in sequence and structure of tubulin subunits across species, there are differences between mammalian and budding yeast microtubules with likely functional consequences for the cell. Here we expand our structural and function comparison of yeast and porcine microtubules to show different distribution of protofilament number in microtubules assembled in vitro from these two species. The different geometry at lateral contacts between protofilaments is likely due to a more polar interface in yeast. We also find that yeast tubulin forms longer and less curved oligomers in solution, suggesting stronger tubulin:tubulin interactions along the protofilament. Finally, we observed species-specific plus-end tracking activity for EB proteins: yeast Bim1 tracked yeast but not mammalian MTs, and human EB1 tracked mammalian but not yeast MTs. These findings further demonstrate that subtle sequence differences in tubulin sequence can have significant structural and functional consequences in microtubule structure and behavior.  相似文献   

7.
Curcumin, a component of turmeric, has potent antitumor activity against several tumor types. However, its molecular target and mechanism of antiproliferative activity are not clear. Here, we identified curcumin as a novel antimicrotubule agent. We have examined the effects of curcumin on cellular microtubules and on reconstituted microtubules in vitro. Curcumin inhibited HeLa and MCF-7 cell proliferation in a concentration-dependent manner with IC(50) of 13.8 +/- 0.7 microm and 12 +/- 0.6 microm, respectively. At higher inhibitory concentrations (> 10 microm), curcumin induced significant depolymerization of interphase microtubules and mitotic spindle microtubules of HeLa and MCF-7 cells. However, at low inhibitory concentrations there were minimal effects on cellular microtubules. It disrupted microtubule assembly in vitro, reduced GTPase activity, and induced tubulin aggregation. Curcumin bound to tubulin at a single site with a dissociation constant of 2.4 +/- 0.4 microm and the binding of curcumin to tubulin induced conformational changes in tubulin. Colchicine and podophyllotoxin partly inhibited the binding of curcumin to tubulin, while vinblastine had no effect on the curcumin-tubulin interactions. The data together suggested that curcumin may inhibit cancer cells proliferation by perturbing microtubule assembly dynamics and may be used to develop efficacious curcumin analogues for cancer chemotherapy.  相似文献   

8.
真核生物的小G蛋白Ran在进化过程中比较保守,它可直接参与细胞周期调控过程,它的缺失突变可以影响很多细胞生理进程.我们已经从小麦(Triticum aestivum L.cv.Jingdong No.1)cDNA文库中克隆到一个新的RanGTPase的同源基因TaRAN1.在此基础上利用裂殖酵母模式系统研究了该基因的功能.研究结果表明,TaRAN1基因超表达可产生缺陷的纺锤体微管,这可能是导致我们以前观察到的异常染色体分离现象的原因.反义TaRAN1基因表达的酵母细胞,微管系统受到破坏.我们推测TaRAN1蛋白在细胞有丝分裂的纺锤体组装和维持微管系统的完整与稳定过程中起着重要作用.透射电镜观察实验结果显示,超表达TaRAN1的酵母细胞具有异常的核膜结构,反义表达TaRAN1的酵母细胞有异常的液泡结构和紊乱的膜结构,由此推测,TaRAN1在整个核质运输事件中可能是必须的.  相似文献   

9.
Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA) has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule - 4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E)-ylidene]-hydrazide (termed as Suprafenacine, SRF). SRF, identified by in silico screening of annotated chemical libraries, was shown to bind microtubules at the colchicine-binding site and inhibit polymerization. This led to G2/M cell cycle arrest and cell death via a mitochondria-mediated apoptotic pathway. Cell death was preceded by loss of mitochondrial membrane potential, JNK - mediated phosphorylation of Bcl-2 and Bad, and activation of caspase-3. Intriguingly, SRF was found to selectively inhibit cancer cell proliferation and was effective against drug-resistant cancer cells by virtue of its ability to bypass the multidrug resistance transporter P-glycoprotein. Taken together, our results suggest that SRF has potential as a chemotherapeutic agent for cancer treatment and provides an alternate scaffold for the development of improved anti-cancer agents.  相似文献   

10.
A Rai  A Surolia  D Panda 《PloS one》2012,7(8):e44311
Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazolidin-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC(50), 7.2±1.8 μM), human breast adenocarcinoma (MCF-7) (IC(50), 10.0±0.5 μM), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC(50), 6.0±1 μM), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC(50), 5.8±0.3 μM) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC(50), 6.5±1μM) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 μM), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3±1.8 μM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i)) of 5.2±1.5 μM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.  相似文献   

11.
Microtubules are dynamic cytoskeleton filaments that are essential for a wide range of cellular processes. They are polymerized from tubulin, a heterodimer of α- and β-subunits. Most eukaryotic organisms express multiple isotypes of α- and β-tubulin, yet their functional relevance in any organism remains largely obscure. The two α-tubulin isotypes in budding yeast, Tub1 and Tub3, are proposed to be functionally interchangeable, yet their individual functions have not been rigorously interrogated. Here, we develop otherwise isogenic yeast strains expressing single tubulin isotypes at levels comparable to total tubulin in WT cells. Using genome-wide screening, we uncover unique interactions between the isotypes and the two major mitotic spindle positioning mechanisms. We further exploit these cells to demonstrate that Tub1 and Tub3 optimize spindle positioning by differentially recruiting key components of the Dyn1- and Kar9-dependent mechanisms, respectively. Our results provide novel mechanistic insights into how tubulin isotypes allow highly conserved microtubules to function in diverse cellular processes.  相似文献   

12.
The design, synthesis and biological evaluations of fourteen 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines are reported. Four compounds (1113, 15) inhibit vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor β (PDGFR-β), and target tubulin leading to cytotoxicity. Compound 11 has nanomolar potency, comparable to sunitinib and semaxinib, against tumor cell lines overexpressing VEGFR-2 and PDGFR-β. Further, 11 binds at the colchicine site on tubulin, depolymerizes cellular microtubules and inhibits purified tubulin assembly and overcomes both βIII-tubulin and P-glycoprotein-mediated drug resistance, and initiates mitotic arrest leading to apoptosis. In vivo, its HCl salt, 21, reduced tumor size and vascularity in xenograft and allograft murine models and was superior to docetaxel and sunitinib, without overt toxicity. Thus 21 affords potential combination chemotherapy in a single agent.  相似文献   

13.
The Morita-Baylis-Hillman (MBH) type reaction of a variety of aromatic and heteroaromatic conjugated nitroalkenes with formaldehyde in the presence of stoichiometric amounts of imidazole and catalytic amounts (10 mol %) of anthranilic acid at room temperature provided the corresponding hydroxymethylated derivatives in moderate to good yield. The parent nitroalkenes and their MBH adducts were subsequently screened for their anticancer activity. Some of the MBH adducts were found to inhibit cervical cancer (HeLa) cell proliferation at low micromolar concentrations with half-maximal inhibitory concentrations in the range of 1-2 microM. The antiproliferative activity of 3-((E)-2-nitrovinyl)furan and three potent MBH adducts, namely, hydroxymethylated derivatives of 3-((E)-2-nitrovinyl)thiophene, 1-methoxy-4-((E)-2-nitrovinyl)benzene, and 1,2-dimethoxy-4-((E)-2-nitrovinyl)benzene was correlated well with their antimicrotubule activity. At their effective concentration range, the tested compounds perturbed the organization of mitotic spindle microtubules and chromosomes. In the presence of hydroxymethylated nitroalkenes, abnormal bipolar or multipolar mitotic spindles were apparent. Interphase microtubules were found to be significantly depolymerized at relatively higher concentrations of the tested compounds. These compounds inhibited tubulin assembly into microtubules in vitro by binding to tubulin at a site distinct from the vinblastine and colchicine binding sites. The compounds reduced the intrinsic tryptophan fluorescence of tubulin and the fluorescence of tubulin-1-anilinonaphthalene-8-sulfonic acid (ANS) complex indicating that they induced conformational changes in the tubulin. The results suggest that hydroxymethylated nitroalkenes exert their antiproliferative activity at least in part by depolymerizing cellular microtubules through tubulin binding and indicate that hydroxymethylated nitroalkenes are promising lead compounds for cancer therapy.  相似文献   

14.
Microscopic observation of fluorescently-stained intracellular molecules within a living cell provides a straightforward approach to understanding their temporal and spatial relationships. However, exposure to the excitation light used to visualize these fluorescently-stained molecules can be toxic to the cells. Here we describe several important considerations in microscope instrumentation and experimental conditions for avoiding the toxicity associated with observing living fluorescently-stained cells. Using a computer-controlled fluorescence microscope system designed for live observation, we recorded time-lapse, multi-color images of chromosomes and microtubules in living human and fission yeast cells. In HeLa cells, a human cell line, microtubules were stained with rhodamine-conjugated tubulin, and chromosomes were stained with a DNA-specific fluorescent dye, Hoechst33342, or with rhodamine-conjugated histone. In fission yeast cells, microtubules were stained with alpha-tubulin fused with the jellyfish green fluorescent protein (GFP), and chromosomes were stained with Hoechst33342.  相似文献   

15.
Hemiasterlins are sponge-derived tripeptides that inhibit cell growth by depolymerizing existing microtubules and inhibiting microtubule assembly. Since hemiasterlins are poor substrates for P-glycoprotein, they are attractive candidates for cancer therapy and have been undergoing clinical trials. The basis of resistance to a synthetic analogue of hemiasterlin, HTI-286 (HTI), was examined in cell populations derived from ovarian carcinoma (A2780/1A9) cells selected in HTI-286. 1A9-HTI-resistant cells (1A9-HTI(R) series) were 57-89-fold resistant to HTI. Cross-resistance (3-186-fold) was observed to other tubulin depolymerizing drugs, with collateral sensitivity (2-14-fold) to tubulin polymerizing agents. Evaluation of the percentage of polymerized and soluble tubulin in 1A9 parental and 1A9-HTI(R) cells corroborated the HTI cytotoxicity data. At 22 degrees C or 37 degrees C, in the absence of any drug, the percentage of polymerized microtubules for each of the 1A9-HTI(R) populations was greater than that in the 1A9 parental cells, consistent with more stable microtubules. Furthermore, microtubules in the 1A9-HTI(R) populations were also more resistant to depolymerization at 4 degrees C and had more acetylated and detyrosinated (Glu-tubulin) alpha-tubulin, all characteristic of more stable microtubules. The 1A9-HTI(R) cell populations exhibited either a single nucleotide change in the M40 beta-tubulin isotype, S172A, or in two cell populations where no beta-tubulin mutation was detected, mutations in the Kalpha-1 alpha-tubulin isotype, S165P and R221H in one resistant cell population and I384V in another. Unlike reports of mutations resulting in reduced drug affinity, the experimental data and location of mutations are consistent with resistance to HTI-286 mediated by microtubule-stabilizing mutations in beta- or alpha-tubulin.  相似文献   

16.
The high degree of conservation of cellular and molecular processes between the budding yeast Saccharomyces cerevisiae and higher eukaryotes have made it a valuable system for numerous studies of the basic mechanisms behind devastating illnesses such as cancer, infectious disease, and neurodegenerative disorders. Several studies in yeast have already contributed to our basic understanding of cellular dysfunction in both Huntington's and Parkinson's disease. Functional genomics approaches currently being undertaken in yeast may lead to novel insights into the genes and pathways that modulate neuronal cell dysfunction and death in these diseases. In addition, the budding yeast constitutes a valuable system for identification of new drug targets, both via target-based and non-target-based drug screening. Importantly, yeast can be used as a cellular platform to analyze the cellular effects of candidate compounds, which is critical for the development of effective therapeutics. While the molecular mechanisms that underlie neurodegeneration will ultimately have to be tested in neuronal and animal models, there are several distinct advantages to using simple model organisms to elucidate fundamental aspects of protein aggregation, amyloid toxicity, and cellular dysfunction. Here, we review recent studies that have shown that amyloid formation by disease-causing proteins and many of the resulting cellular deficits can be faithfully recapitulated in yeast. In addition, we discuss new yeast-based techniques for screening candidate therapeutic compounds for Huntington's and Parkinson's diseases.  相似文献   

17.
Interactions of antimitotic peptides and depsipeptides with tubulin   总被引:1,自引:0,他引:1  
Hamel E 《Biopolymers》2002,66(3):142-160
Tubulin is the target for an ever increasing number of structurally unusual peptides and depsipeptides isolated from a wide range of organisms. Since tubulin is the subunit protein of microtubules, the compounds are usually potently toxic to mammalian cells. Without exception, these (depsi)peptides disrupt cellular microtubules and prevent spindle formation. This causes cells to accumulate at the G2/M phase of the cell cycle through inhibition of mitosis. In biochemical assays, the compounds inhibit microtubule assembly from tubulin and suppress microtubule dynamics at low concentrations. Most of the (depsi)peptides inhibit the binding of Catharanthus alkaloids to tubulin in a noncompetitive manner, GTP hydrolysis by tubulin, and nucleotide turnover at the exchangeable GTP site on beta-tubulin. In general, the (depsi)peptides induce the formation of tubulin oligomers of aberrant morphology. In all cases tubulin rings appear to be formed, but these rings differ in diameter, depending on the (depsi)peptide present during their formation.  相似文献   

18.
CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast   总被引:12,自引:0,他引:12  
Brunner D  Nurse P 《Cell》2000,102(5):695-704
Rod-shaped fission yeast cells grow in a polarized manner, and unlike budding yeast, the correct positioning of the growth sites at cell ends requires interphase microtubules. Here we describe a microtubule guidance mechanism that orients microtubules in the intracellular space along the long axis of the cell, guiding them to their target region at the cell ends. This mechanism involves tip1p, a CLIP170-like protein that localizes to distal tips of cytoplasmic microtubules. In the absence of tip1p, microtubular catastrophe is no longer restricted to cell ends but occurs when microtubules reach any region of the cellular cortex. Thus, tip1p enables microtubules to discriminate different cortical regions and regulates their dynamics accordingly.  相似文献   

19.
Gupta K  Panda D 《Biochemistry》2002,41(43):13029-13038
The dietary flavonoid quercetin has a broad range of biological activities, including potent antitumor activity against several types of tumors. Recently, it has been shown that quercetin inhibits cancer cells proliferation by depleting cellular microtubules and perturbing cellular microtubule functions. However, the direct interactions of quercetin with tubulin and microtubules have not been examined so far. Here, we found that quercetin inhibited polymerization of microtubules and depolymerized microtubules made from purified tubulin in vitro. The binding of quercetin with tubulin was studied using quercetin fluorescence and intrinsic tryptophan fluorescence of tubulin. Quercetin bound to tubulin at a single site with a dissociation constant of 5-7 microM, and it specifically inhibited colchicine binding to tubulin but did not bind at the vinblastine site. In addition, quercetin perturbed the secondary structure of tubulin, and the binding of quercetin stimulated the intrinsic GTPase activity of soluble tubulin. Further, quercetin stabilized tubulin against decay and protected two cysteine residues of tubulin toward chemical modification by 5,5'-dithiobis-2-nitrobenzoic acid. Our data demonstrated that the binding of quercetin to tubulin induces conformational changes in tubulin and a mechanism through which quercetin could perturb microtubule polymerization dynamics has been proposed. The data suggest that quercetin inhibits cancer cells proliferation at least in part by perturbing microtubule functions through tubulin binding.  相似文献   

20.
Vertebrate tubulin is encoded by a multigene family that produces distinct gene products, or isotypes, of both the alpha- and beta-tubulin subunits. The isotype sequences are conserved across species supporting the hypothesis that different isotypes subserve different functions. To date, however, most studies have demonstrated that tubulin isotypes are freely interchangeable and coassemble into all classes of microtubules. We now report that, in contrast to other isotypes, overexpression of a mouse class V beta-tubulin cDNA in mammalian cells produces a strong, dose-dependent disruption of microtubule organization, increased microtubule fragmentation, and a concomitant reduction in cellular microtubule polymer levels. These changes also disrupt mitotic spindle assembly and block cell proliferation. Consistent with diminished microtubule assembly, there is an increased tolerance for the microtubule stabilizing drug, paclitaxel, which is able to reverse many of the effects of class V beta-tubulin overexpression. Moreover, transfected cells selected in paclitaxel exhibit increased expression of class V beta-tubulin, indicating that this isotype is responsible for the drug resistance. The results show that class V beta-tubulin is functionally distinct from other tubulin isotypes and imparts unique properties on the microtubules into which it incorporates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号