首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has previously been shown that apoptosis is increased in ischaemic/reperfused heart. However, little is known about the mechanism of induction of apoptosis in myocardium during ischaemia. We investigated whether prolonged myocardial ischaemia causes activation of caspases and whether this activation is related to cytochrome c release from mitochondria to cytosol during ischaemia. Using an in vitro model of heart ischaemia, we show that 60 min ischaemia leads to a significant accumulation of cytochrome c in the cytosol and a decrease in mitochondrial content of cytochrome c but not cytochrome a. The release of cytochrome c from mitochondria was accompanied by activation of caspase-3-like proteases (measured by cleavage of fluorogenic peptide substrate DEVD-amc) and a large increase in number of cells with DNA strand breaks (measured by TUNEL staining). Caspase-1-like proteases (measured by YVAD-amc cleavage) were not activated during ischaemia. Addition of 14 microM cytochrome c to cytosolic extracts prepared from control hearts induced ATP-dependent activation of caspase-3-like protease activity. Our data suggest that extended heart ischaemia can cause apoptosis mediated by release of cytochrome c from mitochondria and subsequent activation of caspase-3.  相似文献   

2.
In monolayer cultures of P19 EC cells treated with both all-trans retinoic acid (RA) and bone morphogenetic protein (BMP)-4 (RA/BMP-4 treatment), many non-adherent apoptotic cells and activated caspase-3-positive cells were observed, but they were not observed in cells treated with RA or BMP-4 alone. Consistent with the appearance of activated caspase-3-positive cells, BMP-4 and RA together induced processing of caspase-9, Ac-DEVD-MCA cleavage activity and DNA fragmentation. These three activities were observed infrequently or not at all when cells were treated with RA or BMP-4 alone. In the RA/BMP-4 treatment-induced apoptosis, caspase-9 was upstream of caspase-3 in the enzyme cascade, and the caspase-9 to -3 step was key in the apoptotic pathway. Bcl-xL inhibited processing of caspase-9, Ac-DEVD-MCA cleavage activity and DNA fragmentation induced by RA/BMP-4 treatment. However, unlike staurosporine-induced apoptosis, cytochrome c, which activates caspase-9, was not detected in the cytosol of RA/BMP-4-treated cells. RA and BMP-4 may activate caspase-9 through an apoptotic pathway other than the Apaf-1/cytochrome c pathway. The prominent decrease of X-chromosome-linked inhibitory apoptosis protein (XIAP) in the cytosol may explain the activation of caspase-9 induced by RA and BMP-4 treatment.  相似文献   

3.
Scythe cleavage during Fas (APO-1)-and staurosporine-mediated apoptosis   总被引:1,自引:0,他引:1  
Preta G  Fadeel B 《FEBS letters》2012,586(6):747-752
Scythe is a nuclear protein that has been implicated in the apoptotic process in Drosophila melanogaster; however, its role in apoptosis of mammalian cells is not fully elucidated. Here we show that cleavage of Scythe by caspase-3 occurs after activation of both the extrinsic (i.e. Fas/APO-1-mediated) and the intrinsic (i.e. staurosporine-induced) apoptosis pathway. Moreover, this caspase-dependent cleavage correlates with Scythe translocation from the nucleus to the cytosol. We also show that cytosolic re-localization of Scythe is required for Fas/APO-1-triggered phosphatidylserine (PS) exposure, a signal for macrophage clearance of apoptotic cells. Our data suggest that Scythe cleavage may represent a marker for caspase-3 activation and implicate cytosolic re-localization of Scythe in the pathway of PS exposure.  相似文献   

4.
Liu Y  Pu Y  Zhang X 《Journal of virology》2006,80(1):395-403
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X. Zhang, J. Virol. 77:11952-11963, 2003). Here we determined the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. We found that caspase-9 activity was 12-fold higher in virus-infected cells than in mock-infected cells at 24 h postinfection (p.i.). Pretreatment of cells with a caspase-9 inhibitor completely blocked caspase-9 activation and partially inhibited the apoptosis mediated by MHV infection. Analyses of cytochrome c release further revealed an activation of the mitochondrial apoptotic pathway. Stable overexpression of the two antiapoptotic proteins Bcl-2 and Bcl-xL significantly, though only partially, blocked apoptosis, suggesting that activation of the mitochondrial pathway is partially responsible for the apoptosis. To identify upstream signals, we determined caspase-8 activity, cleavage of Bid, and expression of Bax and Bad by Western blotting. We found a drastic increase in caspase-8 activity and cleavage of Bid at 24 h p.i. in virus-infected cells, suggesting that Bid may serve as a messenger to relay the signals from caspase-8 to mitochondria. However, treatment with a caspase-8 inhibitor only slightly blocked cytochrome c release from the mitochondria. Furthermore, we found that Bax but not Bad was significantly increased at 12 h p.i. in cells infected with both live and UV-inactivated viruses and that Bax activation was partially blocked by treatment with the caspase-8 inhibitor. These results thus establish the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis.  相似文献   

5.
Proteolysis of extracellular matrix components and the production of cryptic bioactive factors play key roles in vascular remodeling. We showed previously that extracellular matrix proteolysis is triggered by the apoptosis of endothelial cells (EC), resulting in the release of an anti-apoptotic C-terminal fragment of endorepellin (LG3). Here, we characterize the endorepellin-cleaving proteases released by apoptotic EC using a multifaceted proteomics strategy. Cathepsin L (CathL), a cysteine protease known to be associated with cardiovascular disease progression in animal models and humans, was isolated from medium conditioned by apoptotic EC. CathL cleaved recombinant endorepellin in vitro, leading to LG3 release. Inhibition of CathL activity in EC exposed to pro-apoptotic stimuli prevented LG3 release without modulating the development of apoptosis in EC. Inhibition of caspase-3 activation in EC with the biochemical inhibitor DEVD-fluoromethyl ketone or small interfering RNAs concomitantly prevented CathL release by EC, LG3 production, and the development of paracrine anti-apoptotic activity. These data demonstrate that caspase-3 activation is a novel pathway of importance for triggering extracellular CathL release and the cleavage of extracellular matrix components.  相似文献   

6.
c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is activated in response to a number of extracellular stimuli, including inflammatory cytokines, UV irradiation and ischaemia. A large body of evidence supports a role for JNK signalling in stress-induced apoptosis. It has been hypothesized that JNK may contribute to the apoptotic response by regulating the intrinsic cell death pathway involving the mitochondria. Here, we examined the role of the JNK signalling pathway in hippocampal CA1 apoptotic neurones following transient ischaemia in gerbils. We showed early activation of death receptor-dependent apoptosis (caspase-8 activation 2 days after ischaemia) and a biphasic activation of caspase-3 and caspase-9 after ischaemia. Activation of the mitochondrial pathway, as measured by cytochrome c release, appeared as a late event (5-7 days after ischaemia). AS601245, a novel JNK inhibitor, antagonized activation of both pathways and significantly protected CA1 neurones from cell death. Our results suggest a key role of JNK in the control of death receptor and mitochondrial-dependent apoptosis after transient ischaemia.  相似文献   

7.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

8.
Recently, caspase-2 was shown to act upstream of mitochondria in stress-induced apoptosis. Activation of caspase-8, a key event in death receptor-mediated apoptosis, also has been demonstrated in death receptor-independent apoptosis. The regulation of these initiator caspases, which trigger the mitochondrial apoptotic pathway, is unclear. Here we report a potential regulatory role of caspase-2 on caspase-8 during ceramide-induced apoptosis. Our results demonstrate the sequential events of initiator caspase-2 and caspase-8 activation, Bid cleavage and translocation, and mitochondrial damage followed by downstream caspase-9 and -3 activation and cell apoptosis after ceramide induction in T cell lines. The expression of truncated Bid (tBid) and the reduction in mitochondrial transmembrane potential were blocked by caspase-2 or caspase-8, but not caspase-3, knockdown using an RNA interference technique. Ceramide-induced caspase-8 activation, mitochondrial damage, and apoptosis were blocked in caspase-2 short interfering RNA-expressing cells. Therefore, caspase-2 acts upstream of caspase-8 during ceramide-induced mitochondrial apoptosis. Similarly, sequential caspase-2 and caspase-8 activation upstream of mitochondria was also observed in etoposide-induced apoptosis. These data suggest sequential initiator caspase-2 and caspase-8 activation in the mitochondrial apoptotic pathway induced by ceramide or etoposide.  相似文献   

9.
Postmitochondrial regulation of apoptosis by bicarbonate   总被引:3,自引:0,他引:3  
Ion homeostasis may play a role in the regulation of apoptosis. The current study has shown such a role for bicarbonate (HCO(3)(-)). In apoptosis triggered by ATP depletion, the proapoptotic molecule Bax translocated from the cytosol to mitochondria, followed by cytochrome c release from the organelle, caspase activation, and development of apoptotic morphology. Apoptosis was significantly ameliorated, when HCO(3)(-) was omitted from the incubation medium. The HCO(3)(-) dependence was also demonstrated for apoptosis induced by staurosporine in HeLa cells. Of significance, when HCO(3)(-) was reintroduced, apoptosis was restored. The Cl(-)/HCO(3)(-) exchanger inhibitor DIDS suppressed apoptosis in HCO(3)(-)-containing medium, further supporting a role for intracellular HCO(3)(-) in apoptosis regulation. We subsequently examined HCO(3)(-)-dependent steps in the apoptotic cascade. Translocation of Bax and cytochrome c was not suppressed by the omission of HCO(3)(-), suggesting HCO(3)(-) regulation at postmitochondrial levels. In vitro reconstitution of caspase activation using exogenous cytochrome c and cytosolic extracts was not HCO(3)(-) dependent. HCO(3)(-) was not required for the enzymatic activity of recombinant caspases either. In conclusion, the results have provided compelling evidence for HCO(3)(-) regulation of apoptosis. Such regulation takes place at postmitochondrial levels, downstream of Bax/cytochrome c translocation.  相似文献   

10.
Caspase activation resulting from cytochrome c release from the mitochondria is an essential component of the mechanism of apoptosis initiated by a range of factors. The activation of Bid by caspase-8 in this pathway promotes further cytochrome c release, thereby completing a positive feedback loop of caspase activation. Although the identity of the caspases necessary for caspase-8 activation in this pathway are known, it is still unclear which protease directly cleaves caspase-8. In order to identify the factor responsible we undertook a biochemical purification of caspase-8 cleaving activity in cytosolic extracts to which cytochrome c had been added. Here we report that caspase-6 is the only soluble protease in cytochrome c activated Jurkat cell extracts that has significant caspase-8 cleaving activity. Furthermore the caspase-6 that we purified was sufficient to induce Bid dependent cytochrome c releasing activity in cell extracts. Inhibition of caspase-6 activity in cells significantly inhibited caspase-8 cleavage and apoptosis, therefore establishing caspase-6 as a major activator of caspase-8 in vivo and confirming that this pathway can have a critical role in promotion of apoptosis. We also show that caspase-6 is inactive until the short prodomain is removed. We suggest that the requirement for two distinct cleavage steps to activate an effector caspase may represent an effective mechanism for restriction of spontaneous caspase activation and aberrant entry into apoptosis.  相似文献   

11.
We investigated the ability of caspases (cysteine proteases with aspartic acid specificity) to induce cytochrome c release from mitochondria. When Jurkat cells were induced to undergo apoptosis by Fas receptor ligation, cytochrome c was released from mitochondria, an event that was prevented by the caspase inhibitor, zVAD-fmk (zVal-Ala-Asp-CH2F). Purified caspase-8 triggered rapid cytochrome c release from isolated mitochondria in vitro. The effect was indirect, as the presence of cytosol was required, suggesting that caspase-8 cleaves and activates a cytosolic substrate, which in turn is able to induce cytochrome c release from mitochondria. The cytochrome c releasing activity was not blocked by caspase inhibition, but was antagonized by Bcl-2 or Bcl-xL. Caspase-8 and caspase-3 cleaved Bid, a proapoptotic Bcl-2 family member, which gains cytochrome c releasing activity in response to caspase cleavage. However, caspase-6 and caspase-7 did not cleave Bid, although they initiated cytochrome c release from mitochondria in the presence of cytosol. Thus, effector caspases may cleave and activate another cytosolic substrate (other than Bid), which then promotes cytochrome c release from mitochondria. Mitochondria significantly amplified the caspase-8 initiated DEVD-specific cleavage activity. Our data suggest that cytochrome c release, initiated by the action of caspases on a cytosolic substrates, may act to amplify a caspase cascade during apoptosis.  相似文献   

12.
On binding to its receptor, transforming growth factor beta (TGFbeta) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFbeta-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFbeta-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFbeta-treated cells. TGFbeta induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFbeta induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFbeta-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFbeta-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFbeta-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFbeta induced an apoptotic pathway via FADD-independent activation of caspase-8.  相似文献   

13.
Photodynamic therapy (PDT) and photodetection with protoporphyrin IX (PpIX) precursors have widely been used in the diseases with abnormally proliferative cells, but the mechanism of the modality is not fully understood yet. In this study 70-95% of apoptotic cells after PDT with PpIX precursor, hexaminolevulinate (HAL) in two human lymphoma cell lines, Namalwa and Bjab, were confirmed by fluorescence microscopy, electron microscopy and flow cytometry. HAL-derived PpIX was mainly distributed in the mitochondria and endoplasmic reticulum (ER), both of which were initial targets after light exposure causing two major pathways simultaneously involved in the apoptotic induction. One was the mitochondrial pathway including the release of cytochrome c, cleavage of caspases-9/-3, poly(ADP-ribose) polymerase and DNA fragmentation factor. The other was the ER stress-mediated pathway triggering a transient increase in the cytosolic Ca(2+) level after photodamage to the ER calcium pump protein SERCA2. The released Ca(2+) further initiated the caspase-8 cleavage. The use of both extracellular Ca(2+) chelator EGTA and intracellular Ca(2+) chelator BAPTA-AM confirmed that such cytosolic Ca(2+) originated from the ER rather than extracellular Ca(2+)-containing medium. About 30% of the apoptosis was blocked with BAPTA-AM alone; while a complete inhibition of such apoptosis was achieved with a combination of the caspase-9 inhibitor Z-LEHD-FMK and caspase-8 inhibitor Z-IETD-FMK, thus quantifying each role of the mitochondrial and ER pathways.  相似文献   

14.
Thiede B  Siejak F  Dimmler C  Rudel T 《Proteomics》2002,2(8):996-1006
Jurkat T cells induced to undergo apoptosis by the CD95(Fas/Apo-1) pathway were investigated by proteome analysis. The most prominent differing protein spots of apoptotic and nonapoptotic cells were identified as various heterogeneous ribonuclear proteins (hnRNPs) and Rho guanin nucleotide dissociation inhibitor (GDI) 2. In apoptotic cells, four spots slightly differing in molecular mass and/or isoelectric point were identified as Rho GDI 2 with the mass and pI as expected after caspase-3 cleavage near the N-terminus. Subcellular proteome analysis revealed that Rho GDI 2 was highly enriched in the cytosolic fraction, present in minor amounts in the nuclear fraction and absent from the mitochondrial fraction. In apoptotic cells however, the spots representing processed and modified Rho GDI 2 were found in the cytosol, in the nucleus and also the mitochondria at different spot positions. In addition, twelve different hnRNPs were identified to be altered after induction of cell death of which hnRNPs A/B, D, F, H, I and L were hitherto unknown to be modified during apoptosis. Most of the hnRNP spots were found in the nucleus of nonapoptotic cells, whereas these proteins, either modified or unmodified, relocated to the cytosol and/or the mitochondria in apoptotic cells. Our results demonstrate that modification of proteins during apoptosis is often accompanied by their relocalisation between cellular compartments.  相似文献   

15.
Ultraviolet light (UV) induced rapid apoptosis of U937 leukemia cells, concurrent with DNA fragmentation and cleavage of poly(ADP-ribose)polymerase (PARP) by activated caspase-3. Thein vitroreconstitution of intact HeLa S3 nuclei and apoptotic U937 cytosolic extract (CE) revealed that (i) Ca2+/Mg2+-dependent, Zn2+-sensitive endonuclease activated in the apoptotic CE induced DNA ladder in HeLa nuclei at pH 6.8–7.4, (ii) activated caspase-3 cleaved PARP in HeLa nuclei, and (iii) when the apoptotic CE was treated with the caspase-3 inhibitor (1 μM Ac-DEVD-CHO) or the caspase-1 inhibitor (10 μM Ac-YVAD-CHO), the former, but not the latter, caused a 50% inhibition of DNA fragmentation and the complete inhibition of PARP cleavage in HeLa nuclei. Similarly, Ac-DEVD-CHO (100 μM) inhibited apoptosis and DNA ladder by 50% and PARP cleavage completely in UV-irradiated U937 cells, but Ac-YVAD-CHO (100 μM) did not. Thus, UV-induced apoptosis of U937 cells involves the Ca2+/Mg2+-dependent endonuclease pathway and the caspase-3–PARP cleavage–Ca2+/Mg2+-dependent endonuclease pathway. The former pathway produced directly 50% of apoptotic DNA ladder, and the latter involved activated caspase-3 and PARP cleavage, followed by formation of the remaining 50% DNA ladder by the activated endonuclease. In UV-irradiated B-cell lines, further, p53-dependent increase of Bax resulted in a greater caspase-3 activation compared to its absence. However, UV-induced activation of JNK1 and p38 was not affected by the caspase-1 and -3 inhibitors in U937 cells, so that caspases-1 and -3 do not function upstream of JNK1 and p38.  相似文献   

16.
Recent evidence suggests that mitochondrial apoptosis regulators and executioners may regulate differentiation, without being involved in cell death. However, the involved factors and their roles in differentiation and apoptosis are still not fully determined. In the present study, we compared mitochondrial pathway of cell death during early neural differentiation from human embryonic stem cells (hESCs). Our results demonstrated that ROS generation, cytosolic cytochrome c release, caspases activation and rise in p53 protein level occurred upon either neural or apoptosis induction in hESCs. However, unlike apoptosis, no remarkable increase in apoptotic protease activating factor-1 (Apaf-1) level at early stages of differentiation was observed. Also the caspase-like activity of caspase-9 and caspase-3/7 were seen less than apoptosis. The results suggest that low levels of Apaf-1 as an adaptor protein might be considered as a possible regulatory barrier by which differentiating cells control cell death upon rise in ROS production and cytochrome c release from mitochondria. Better understanding of mechanisms via which mitochondria-mediated apoptotic pathway promote neural differentiation can result in development of novel therapeutic approaches.  相似文献   

17.
The participation of the mitochondrial pathway in paclitaxel-induced apoptosis has been well documented. After addition of paclitaxel to U937 cells, however, we observed an early expression of five endoplasmic reticulum (ER) stress response genes that preceded the release of cytochrome c from the mitochondria and the cleavage of the caspases. Involvement of the ER was supported by the following evidence. Paclitaxel treatment not only activated calpain and caspase-4, but also induced a gradual increase in the cytosolic Ca(2+) concentration at 3-6 h. Paclitaxel-induced apoptosis can be inhibited by the calpain inhibitor calpeptin and IP(3) receptor inhibitors. Either buffering of the cytosolic Ca(2+) or inhibition of mitochondrial calcium uptake reduced BiP expression. These inhibitors also reduced mitochondrial apoptotic signals, such as mitochondrion membrane potential disruption, cytochrome c release and eventually reduced the death of U937 cells. Paclitaxel-induced Bax/Bak translocation to the ER and Bax dimerization on the ER membrane occurred within 3 h, which led to a Ca(2+) efflux into cytosol. Moreover, we found that cytochrome c translocated to the ER after releasing from mitochondria and then interacted with the IP(3) receptor at 12-15 h. This phenomenon has been known to amplify apoptotic signaling. Taken together, ER would seem to contribute to paclitaxel-induced apoptosis via both the early release of Ca(2+) and the late amplification of mitochondria-mediated apoptotic signals.  相似文献   

18.
HSP27 inhibits cytochrome c-dependent activation of procaspase-9.   总被引:25,自引:0,他引:25  
We have previously shown that the small heat shock protein HSP27 inhibited apoptotic pathways triggered by a variety of stimuli in mammalian cells. The present study demonstrates that HSP27 overexpression decreases U937 human leukemic cell sensitivity to etoposide-induced cytotoxicity by preventing apoptosis. As observed for Bcl-2, HSP27 overexpression delays poly(ADP-ribose)polymerase cleavage and procaspase-3 activation. In contrast with Bcl-2, HSP27 overexpression does not prevent etoposide-induced cytochrome c release from the mitochondria. In a cell-free system, addition of cytochrome c and dATP to cytosolic extracts from untreated cells induces the proteolytic activation of procaspase-3 in both control and bcl-2-transfected U937 cells but fails to activate procaspase-3 in HSP27-overexpressing cells. Immunodepletion of HSP27 from cytosolic extracts increases cytochrome c/dATP-mediated activation of procaspase-3. Overexpression of HSP27 also prevents procaspase-9 activation. In the cell-free system, immunodepletion of HSP27 increases LEDH-AFC peptide cleavage activity triggered by cytochrome c/dATP treatment. We conclude that HSP27 inhibits etoposide-induced apoptosis by preventing cytochrome c and dATP-triggered activity of caspase-9, downstream of cytochrome c release.  相似文献   

19.
The focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) are protein-tyrosine kinases that are overexpressed and activated in human breast cancer. To determine the role of EGFR and FAK survival signaling in breast cancer, EGFR was stably overexpressed in BT474 breast cancer cells, and each signaling pathway was specifically targeted for inhibition. FAK and EGFR constitutively co-immunoprecipitated in EGFR-overexpressing BT474 cells. In low EGFR-expressing BT474-pcDNA3 vector control cells, inhibition of FAK by the FAK C-terminal domain caused detachment and apoptosis via pathways involving activation of caspase-3 and -8, cleavage of poly(ADP-ribose) polymerase, and caspase-3-dependent degradation of AKT. This apoptosis could be rescued by the dominant-negative Fas-associated death domain, indicating involvement of the death receptor pathway. EGFR overexpression did not inhibit detachment induced by the FAK C-terminal domain, but did suppress apoptosis, activating AKT and ERK1/2 survival pathways and inhibiting cleavage of FAK, caspase-3 and -8, and poly(ADP-ribose) polymerase. Furthermore, this protective effect of EGFR signaling was reversed by EGFR kinase inhibition with AG1478. In addition, inhibition of FAK and EGFR in another breast cancer cell line (BT20) endogenously overexpressing these kinases also induced apoptosis via the same mechanism as in the EGFR-overexpressing BT474 cells. The results of this study indicate that dual inhibition of FAK and EGFR signaling pathways can cooperatively enhance apoptosis in breast cancers.  相似文献   

20.
Swainsonine (1, 2, 8-trihyroxyindolizidine, SW), a natural alkaloid, has been reported to exhibit anti-cancer activity on several mouse models of human cancer and human cancers in vivo. However, the mechanisms of SW-mediated tumor regression are not clear. In this study, we investigated the effects of SW on several human lung cancer cell lines in vitro. The results showed that SW significantly inhibited these cells growth through induction of apoptosis in different extent in vitro. Further studies showed that SW treatment up-regulated Bax, down-regulated Bcl-2 expression, promoted Bax translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, which in turn caused the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), resulting in A549 cell apoptosis. However, the expression of Fas, Fas ligand (FasL) or caspase-8 activity did not appear significant changes in the process of SW-induced apoptosis. Moreover, SW treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activity in xenograft tumor cells, resulting in a significant decrease of tumor volume and tumor weight in the SW-treated xenograft mice groups in comparison to the control group. Taken together, this study demonstrated for the first time that SW inhibited A549 cancer cells growth through a mitochondria-mediated, caspase-dependent apoptotic pathway in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号