首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the effect of flanking sequences on Tus-induced replication arrest. pBR322 plasmid derivatives which carry the Escherichia coli replication terminator TerB at different locations were used. Efficiency of the replication arrest was estimated from the plasmid copy number and transformation frequency of tus+ cells. We found that flanking sequences do affect replication arrest efficiency, a weak arrest being correlated with the presence of an AT-rich region which is replicated just before TerB. Some sequences located after the replication terminator can also affect replication termination. We propose that the AT-rich regions might impair binding of the Tus protein to the TerB sequence or facilitate helicase-induced unwinding of DNA and Tus displacement from the TerB site.  相似文献   

2.
3.
Joseph Germino  Deepak Bastia 《Cell》1981,23(3):681-687
The replication terminus of the drug resistance factor R6K has been cloned into the plasmid vectors pBR313 and pBR322. When the exogenously added DNA is replicated in vitro using cell extracts prepared from Escherichia coli, the plasmid replication terminus temporarily arrests the progression of the unidirectionally moving replication fork at or near the cloned terminator sequence. When the relative location of the terminator sequence is changed with respect to the replication origin, the point of arrest of the replication fork shifts correspondingly to the new location of the terminator. Termination of replication takes place in vitro regardless of whether the cell extracts used in the in vitro reaction are prepared from E. coli with a resident terminus sequence containing plasmid. From these observations we conclude that the termination of replication in vitro is identical or very similar to that observed in vivo, membrane association is not necessary for the activity of the replication terminus and the terminus sequence does not code for a transacting factor necessary for termination of replication. Therefore, any transacting factor which may be needed for the termination of replication must be coded by the host chromosome.  相似文献   

4.
We used a Southern hybridization assay to locate precisely the sites at which DNA replication is arrested in the terminus region of the Escherichia coli chromosome. The assay was based on the properties of restriction fragments that contain stalled replication forks. Replication forks that entered the terminus from the clockwise direction with respect to the genetic map were inhibited near manA at a site called T2, which we located at kilobase 442 on the physical map of Bouché (J. P. Bouché, J. Mol. Biol. 154:1-20, 1982). Those that entered the terminus region traveling in the counterclockwise direction were inhibited near pyrF at a site called T1, which we located at kilobase 90. In each case we found only a single, precise site of arrest. Inhibition at T1 was not detectable in our assay in strains lacking the trans-acting locus tus, which is located near T2 and is required for T1 to function. We demonstrated that the sites of inhibition are also used during termination of replication in exponentially growing, wild-type cells. In all previous studies on the terminus of E. coli, inhibition has only been detected in strains that were modified so that the origin used was placed near the terminus to force the use of the sites of inhibition.  相似文献   

5.
The terminus region of the Escherichia coli chromosome contains two sites that inhibit the progression of DNA replication forks. These termination sites, designated T1 and T2, are separated by 7.5 min (350 kilobases [kb]) on the genetic map and are located at the extremities of the terminus region. They demonstrate polarity (they stop replication forks traveling in one direction but not the other) and inhibit replication forks that have passed through and are about to leave the terminus. We have used deletion mutations in the terminus region to map the locations of T1 and T2 more accurately and to initiate studies on the mechanism of replication fork inhibition. We have narrowed the boundaries of T1 and T2 to 20 and 4 kb, respectively. T1 maps between kb 80 and 100 on the physical map of the terminus region (J. P. Bouché, J. Mol. Biol. 154:1-20, 1982), and T2 maps between kb 438 and 442. In addition, we report here that deletion of the region containing the T2 termination site inactivated T1. Supplying the T2 region on a plasmid restored T1 function, demonstrating that inhibition of replication at T1 requires a trans-acting factor which maps in the vicinity of termination site T2. We have called this newly identified terminus function the termination utilization substance (tus).  相似文献   

6.
Inhibition sites T1 and T2 from the Escherichia coli terminus functioned with the same characteristics in ColE1-derived plasmids and in the chromosome. These characteristics included polarity and dependence on tus, a trans-acting factor required for inhibition. Inhibition in the terminus region of the R6K plasmid was also tus dependent.  相似文献   

7.
8.
The effect of the tus protein-terB sequence complex of Escherichia coli on the movement of the SV40 large tumor antigen (T antigen)-mediated replication fork during SV40 DNA replication in vitro has been examined. In the monopolymerase and dipolymerase systems, the tus protein-terB complex efficiently blocked the replication fork movement in a polar fashion, as observed in prokaryotic replication systems. With crude cytosolic extracts of HeLa cells, the same polarity of fork arrest was observed, but the block of replication fork movement was inefficient. These results indicate that the structure of the prokaryotic tus protein-terB complex allows it to block replication fork movement in an orientation-dependent manner. We also show that the tus protein-terB complex blocks the 3'----5' helicase action of T antigen in a polar fashion, using substrates comprised of single-stranded M13 DNA with either a 52-base pair (bp) or 29-bp duplex containing the terB sequence. The tus protein-terB complex formed on the 52-bp duplex was less effective than the complex formed on the 29-bp duplex in blocking the helicase action of T antigen. With the 52-bp duplex substrate, T antigen movement was only partially (30%) blocked by the tus protein-terB sequence complex in the active orientation, whereas the E. coli dnaB helicase moving 5'----3' was blocked more than 90% by the complex in the active orientation. However, with the shorter 29-bp duplex substrate, the complex blocked the T antigen helicase activity about 75%, whereas the dnaB helicase activity was completely blocked. Altogether, these results suggest that the T antigen helicase activity, when coupled to DNA replication, is more susceptible to arrest by the tus protein-terB complex than the T antigen functioning as a helicase alone.  相似文献   

9.
The Bacillus subtilis 168 chromosome is known to contain at least six DNA replication terminators in the terminus region of the chromosome. By using a degenerate DNA probe for the consensus terminator sequence and low-stringency hybridization conditions, several additional minor hybridizing bands were identified. DNA corresponding to the most intense of these bands was cloned and characterized. Although localized in the terminus region, it could not bind RTP and possibly represents a degenerate terminator. A search of the SubtiList database identified an additional terminator sequence in the terminus region, near glnA. It was shown to bind RTP and to function in blocking replication fork movement in a polar manner. Its orientation conformed to the replication fork trap arrangement of the other terminators. The low-stringency hybridization experiments failed to identify any terminus region-type terminators in the region of the chromosome where postinitiation control sequences (STer sites) are known to reside. The two most likely terminators in STer site regions, in terms of sequence similarity to terminus region terminators, were identified through sequence searching. They were synthesized and were found not to bind RTP under conditions that allowed binding to terminus region terminators. Neither did they elicit fork arrest, when present in a plasmid, under stringent conditions. It is concluded that the STer site terminators, at least the first two to the left of oriC, do not have the typical consensus A+B site makeup of terminus region terminators.  相似文献   

10.
We determined the nucleotide sequence of a DNA fragment which contains the replication region of pMSC262, a Mycobacterium scrofulaceum plasmid used to construct the Mycobacterium-Escherichia coli shuttle vector. The complete sequence of the fragment contained 2,504 bp with an overall G+C content of 69.8%. By deletion analysis, we found that the minimum length required for plasmid replication in M. bovis BCG was about 1.6 kb. Within this region, several open reading frames (ORFs) and a putative replication origin (ori) were identified by computer analysis. One of the ORFs, ORF2, which encodes a putative 28.9-kDa basic protein with characteristics of DNA-binding proteins, appeared to be involved in replication of the plasmid in BCG. By separation of ORF2 and the putative ori region, it was revealed that the relative locations of ORF2 and the putative ori region are likely important for replication in BCG. No DNA or amino acid homologies were found between this replication region and that of pAL5000, another mycobacterial plasmid used for vector plasmid construction. In addition, we found that this replicon did not lead to replication in E. coli and was compatible in BCG with pAL5000-derived vector plasmid pYUB75 (R. G. Barletta, D. D. Kim, S. B. Snapper, B. R. Bloom, and W. R. Jacobs, J., J. Gen. Microbiol. 138:23-30, 1992).  相似文献   

11.
We have sequenced and analysed a 3.1 kb fragment of the 55 kb endogenous Bacillus subtilis plasmid pLS20 containing its replication functions. Just outside the region required for autonomous replication, a segment of 18bp was identified as being almost identical to part of the major B. subtilis chromosomal replication terminator. Here, we demonstrate that this segment is part of a functional replication terminator. This newly identified element, designated Ter LS20, is the first replication terminator identified on a theta plasmid from a Gram-positive bacterium. Ter LS20 is distinct from other known replication terminators in the sense that it is functional in both orientations. The region required for bipolar functionality of TerLS20 was delineated to a sequence of 29 bp, which is characterized by an imperfect dyad symmetry.  相似文献   

12.
13.
The DNA sequence of small cryptic plasmid pAG20 in Acetobacter aceti was determined at 3064 bp with 51.6% GC pairs. The plasmid encoded a 186 amino acid protein which is important for plasmid replication in Gram-negative bacteria except Escherichia coli. Two 21 bp large direct repeat sequence 1 and two 13 bp direct repeat sequence 2 were determined in the regulation region upstream from gene encoded Rep protein. Vector pAG24 with kanamycin gene and two deletion derivatives pAG25 and pAG26 without rep gene from plasmid pAG20 were constructed. Plasmid pAG24 was replicated in a broad host range like E. coli, Acetobacter pasteurianus, A. aceti, Comanomonas spp., Serratia marcescens, and Shigella spp.  相似文献   

14.
T Sahoo  B K Mohanty  I Patel    D Bastia 《The EMBO journal》1995,14(3):619-628
The termination of DNA replication at a sequence-specific replication terminus in Bacillus subtilis is catalyzed by a dimeric replication terminator protein (RTP) of subunit mol. wt 14,500. RTP has become an attractive protein with which to study the molecular mechanism of termination because its crystal structure has now been solved and the previous lack of an in vitro replication system has been largely overcome by our discovery that the protein terminates replication in vivo and in vitro in the well-studied Gram-negative Escherichia coli system. We have exploited the surrogate in vitro system to show that RTP acts as a polar contrahelicase to DnaB helicase of E. coli only when two RTP dimers are bound co-operatively to overlapping core and auxiliary sequences comprising the terminus. A core sequence by itself binds one dimer of RTP, but elicits no contrahelicase activity. Binding of two RTP dimers to a tandem head-to-tail core repeat also elicits no contrahelicase activity, thus suggesting that a specific stereochemical interaction between two RTP dimers and with the terminator site is essential for termination. RTP blocks unwinding of DNA substrates containing heteroduplex regions that include the terminus and are in the size range of approximately 50 to > 1000 bp in length. Thus, the protein blocks authentic helicase-catalyzed unwinding rather than just the translocation of the helicase on DNA.  相似文献   

15.
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.  相似文献   

16.
17.
18.
T Kobayashi  M Hidaka    T Horiuchi 《The EMBO journal》1989,8(8):2435-2441
Activity binding specifically to the 22 bp of the DNA replication terminus (ter) sequence on plasmid R6K and the Escherichia coli genome was detected in the crude extract of E. coli cells. This activity was inactivated by heat or by protease but not by RNase treatments. Overproduction of the ter binding activity was observed when the extract was prepared from the cell carrying a plasmid with a chromosomal-derived 5.0 kb EcoRI fragment, on which one of the four terC sites, terC2, was also located. By mutagenesis of the 5.0 kb fragment on the plasmid with transposon Tn3 and subsequent replacement of the corresponding chromosomal region with the resulting mutant alleles, we isolated tau- mutants completely defective in ter binding activity. These mutants simultaneously lost the activity to block the progress of the DNA replication fork at any ter site, on the genome or the plasmid. It would thus appear that the ter binding protein plays an essential role in the termination reaction, at the ter sites.  相似文献   

19.
K C Luk  W Szybalski 《Gene》1982,17(3):247-258
For cloning, assaying the function and sequencing terminators, we have constructed the pD12 plasmid, in which the late promotor p'R of phage lambda controls the expression of the galK gene of the pK03 plasmid of McKenney et al. (1981). The lambda tL3 terminator region was cloned in this plasmid between the promoter and the galK gene, and found to be 90-94% effective in preventing galactokinase expression in both rho+ and rho- hosts. Is is also active in vitro, both in the presence or absence of the rho factor. The termination point is located at 4320 bp to the left of the SL startpoint of the PL-RNA, just downstream of gene exo. We have sequenced 356 bp of the hitherto uncharted lambda DNA to the right of the TaqI cut, which in turn is 110 bp to the right of the b522 deletion at 63.9% lambda. The tL3 terminator has several features common to other rho-independent termination sequences, including an 81% G+C-rich region of 2X8-bp symmetry ("stem") with a 5-bp intervening "loop", partially overlapping and followed by a sequence transcribed into the pyrimidine-rich CCUUUCU-OH 3' terminus of the RNA. The termination point that follows the last U was determined by the S1 mapping technique.  相似文献   

20.
C Hatt  M E Ward    I N Clarke 《Nucleic acids research》1988,16(9):4053-4067
Chlamydia trachomatis serovar L1/440/LN possesses a 7498bp plasmid which was designated pLGV440. The plasmid was cloned at the BamH1 site of pAT153 into Escherichia coli and the recombinant plasmid was designated pCTL1. A detailed restriction endonuclease map of pCTL1 was constructed. A fragment of the chlamydial plasmid was shown to function as a promoter in E. coli when placed upstream of the lacZ gene. The entire plasmid was sequenced by the chain termination method. Open reading frames were identified from the resulting consensus sequence together with a candidate for the plasmid origin of replication consisting of four perfect tandem repeats of a 22bp sequence, an A:T rich sequence and an open reading frame which could generate a 34.8kdal product. The predicted polypeptide products of the open reading frames were compared by computer with all reported protein sequences. Homology of the predicted polypeptide product of an open reading frame to the E. coli dnaB protein and the analogous product of gene 12 of bacteriophage P22 is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号