首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We used an 8987-EST collection to construct a cDNA microarray system with various genomics information (full-length cDNA, expression profile, high accuracy genome sequence, phenotype, genetic map, and physical map) in rice. This array was used as a probe to hybridize target RNAs prepared from normally grown callus of rice and from callus treated for 6 hr or 3 days with the hormones abscisic acid (ABA) or gibberellin (GA). We identified 509 clones, including many clones that had never been annotated as ABA-or GA-responsive. These genes included not only ABA- or GA-responsive genes but also genes responsive to other physiological conditions such as pathogen infection, heat shock, and metal ion stress. Comparison of ABA- and GA-responsive genes revealed antagonistic regulation for these genes by both hormones except for one defense-related gene, thionin. The gene for thionin was up-regulated by both hormone treatments for 3 days. The upstream regions of all the genes that were regulated by both hormones had cis-elements for ABA and GA response. We performed a clustering analysis of genes regulated by both hormones and various expression profiles that showed three notable clusters (seed tissues, low temperature and sugar starvation, and thionin-gene related). A comparison of the cis-elements for hormone response genes between rice and Arabidopsis thaliana, we identified cis-elements for dehydration-stress response or for expression of amylase gene as Arabidopsis gene-specific or rice gene-specific, respectively.  相似文献   

2.
Gibberellins and Light-Stimulated Seed Germination   总被引:3,自引:0,他引:3  
Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.  相似文献   

3.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

4.
In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.  相似文献   

5.
DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy   总被引:2,自引:0,他引:2  
Seed dormancy is a key adaptive trait in plants responsible for the soil seed bank. The long established hormone-balance theory describes the antagonistic roles of the dormancy promoting plant hormone abscisic acid (ABA), and the germination promoting hormone gibberellin (GA) in dormancy control. Light, temperature, and other dormancy-breaking signals function to modulate the synthesis and perception of these hormones in the seed. However, the way in which these hormones control dormancy in the imbibed seed remains unknown. Here, we show that the DELLA protein regulators of the GA response are required for dormancy and describe a model through which hormone signal integration and dormancy regulation is achieved. We demonstrate that cotyledon expansion precedes radicle emergence during Arabidopsis seed germination and that a striking correlation exists between final seedling cotyledon size and seed dormancy in the DELLA mutants. Furthermore, twelve previously characterized seed-dormancy mutants are also defective in the control of cotyledon size in a manner consistent with their effect on germination potential. We propose that DELLA-mediated, light-, temperature-, and hormone-responsive cotyledon expansion prior to radicle emergence overcomes dormancy imposed by the seed coat and underlies seed-dormancy control in Arabidopsis.  相似文献   

6.
7.
We explore the roles of gibberellin (GA) signaling genes SLEEPY1 (SLY1) and RGA-LIKE2 (RGL2) in regulation of seed germination in Arabidopsis thaliana, a plant in which the hormone GA is required for seed germination. Seed germination failure in the GA biosynthesis mutant ga1-3 is rescued by GA and by mutations in the DELLA gene RGL2, suggesting that RGL2 represses seed germination. RGL2 protein disappears before wild-type seed germination, consistent with the model that GA stimulates germination by causing the SCF(SLY1) E3 ubiquitin ligase complex to trigger ubiquitination and destruction of RGL2. Unlike ga1-3, the GA-insensitive sly1 mutants show variable seed dormancy. Seed lots with high seed dormancy after-ripened slowly, with stronger alleles requiring more time. We expected that if RGL2 negatively controls seed germination, sly1 mutant seeds that germinate well should accumulate lower RGL2 levels than those failing to germinate. Surprisingly, RGL2 accumulated at high levels even in after-ripened sly1 mutant seeds with 100% germination, suggesting that RGL2 disappearance is not a prerequisite for seed germination in the sly1 background. Without GA, several GA-induced genes show increased accumulation in sly1 seeds compared with ga1-3. It is possible that the RGL2 repressor of seed germination is inactivated by after-ripening of sly1 mutant seeds.  相似文献   

8.
9.
10.
赤霉素作用机理的分子基础与调控模式研究进展   总被引:2,自引:0,他引:2  
赤霉素(gibberellins或gibberellic acid, GA)作为植物生长的必需激素之一, 调控植物生长发育的各个方面, 如: 种子萌发, 下胚轴的伸长, 叶片的生长和植物开花时间等。近年来随着植物功能基因组学的进一步发展, 有关赤霉素生物合成及其调控, 赤霉素信号转导途径, 以及赤霉素与其他激素和环境因子的互作等领域的研究取得了较大的进展。本文综述了赤霉素生物合成的生物学途径及其调控研究; GA信号转导通道的研究进展, 特别是DELLA蛋白阻遏植物生长发育的分子机理和GA解除阻遏作用(derepress)的分子模型; GA受体研究的新进展; 探讨GA与其它激素之间的相互作用, 以及植物在应答环境过程中的作用。  相似文献   

11.
Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is increased in immature seeds of lec2 and fus3 mutants relative to wild-type level. In addition, we show that the formation of ectopic trichome cells on lec2 and fus3 embryos is a GA-dependent process as in true leaves, suggesting that the GA pathway is misactivated in embryonic mutants. We next demonstrate that the GA-biosynthesis gene AtGA3ox2, which encodes the key enzyme AtGA3ox2 that catalyzes the conversion of inactive to bioactive GAs, is ectopically activated in embryos of the two mutants. Interestingly, both beta-glucuronidase reporter gene expression and in situ hybridization indicate that FUS3 represses AtGA3ox2 expression mainly in epidermal cells of embryo axis, which is distinct from AtGA3ox2 pattern at germination. Finally, we show that the FUS3 protein physically interacts with two RY elements (CATGCATG) present in the AtGA3ox2 promoter. This work suggests that GA biosynthesis is directly controlled by embryonic regulators during Arabidopsis embryonic development.  相似文献   

12.
Gibberellins: regulating genes and germination   总被引:13,自引:1,他引:13  
  相似文献   

13.
Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.  相似文献   

14.
S Yamaguchi  M W Smith  R G Brown  Y Kamiya    T Sun 《The Plant cell》1998,10(12):2115-2126
Despite extensive studies on the roles of phytochrome in photostimulated seed germination, the mechanisms downstream of the photoreceptor that promote germination are largely unknown. Previous studies have indicated that light-induced germination of Arabidopsis seeds is mediated by the hormone gibberellin (GA). Using RNA gel blot analyses, we studied the regulation of two Arabidopsis genes, GA4 and GA4H (for GA4 homolog), both of which encode GA 3beta-hydroxylases that catalyze the final biosynthetic step to produce bioactive GAs. The newly isolated GA4H gene was expressed predominantly during seed germination. We show that expression of both GA4 and GA4H genes in imbibed seeds was induced within 1 hr after a brief red (R) light treatment. In the phytochrome B-deficient phyB-1 mutant, GA4H expression was not induced by R light, but GA4 expression still was, indicating that R light-induced GA4 and GA4H expression is mediated by different phytochromes. In contrast to the GA4 gene, the GA4H gene was not regulated by the feedback inhibition mechanism in germinating seeds. Our data demonstrate that expression of GA 3beta-hydroxylase genes is elevated by R light, which may result in an increase in biosynthesis of active GAs to promote seed germination. Furthermore, our results suggest that each GA 3beta-hydroxylase gene plays a unique physiological role during light-induced seed germination.  相似文献   

15.
16.
Angiosperm seeds integrate various environmental signals, such as water availability and light conditions, to make a proper decision to germinate. Once the optimal conditions are sensed, gibberellin (GA) is synthesized, triggering germination. Among environmental signals, light conditions are perceived by phytochromes. However, it is not well understood how phytochromes regulate GA biosynthesis. Here we investigated whether phytochromes regulate GA biosynthesis through PIL5, a phytochrome-interacting bHLH protein, in Arabidopsis. We found that pil5 seed germination was inhibited by paclobutrazol, the ga1 mutation was epistatic to the pil5 mutation, and the inhibitory effect of PIL5 overexpression on seed germination could be rescued by exogenous GA, collectively indicating that PIL5 regulates seed germination negatively through GA. Expression analysis revealed that PIL5 repressed the expression of GA biosynthetic genes (GA3ox1 and GA3ox2), and activated the expression of a GA catabolic gene (GA2ox) in both PHYA- and PHYB-dependent germination assays. Consistent with these gene-expression patterns, the amount of bioactive GA was higher in the pil5 mutant and lower in the PIL5 overexpression line. Lastly, we showed that red and far-red light signals trigger PIL5 protein degradation through the 26S proteasome, thus releasing the inhibition of bioactive GA biosynthesis by PIL5. Taken together, our data indicate that phytochromes promote seed germination by degrading PIL5, which leads to increased GA biosynthesis and decreased GA degradation.  相似文献   

17.
18.
Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component of GA signal transduction, spy mutants and plants containing a 35S:SPY construct have been examined. A detailed investigation of the spy mutant phenotype suggests that SPY may play a role in plant development beyond its role in GA signaling. Consistent with this suggestion, the analysis of spy er plants suggests that the ERECTA (ER) gene, which has not been implicated as having a role in GA signaling, appears to enhance the non-GA spy mutant phenotypes. Arabidopsis plants containing a 35S:SPY construct possess reduced GA response at seed germination, but also possess phenotypes consistent with increased GA response, although not identical to spy mutants, during later vegetative and reproductive development. Based on these results, the hypothesis that SPY is specific for GA signaling is rejected. Instead, it is proposed that SPY is a negative regulator of GA response that has additional roles in plant development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号