首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.  相似文献   

2.
Leiomodin and tropomodulin in smooth muscle   总被引:1,自引:0,他引:1  
Evidence isaccumulating to suggest that actin filament remodeling is critical forsmooth muscle contraction, which implicates actin filament ends asimportant sites for regulation of contraction. Tropomodulin (Tmod) andsmooth muscle leiomodin (SM-Lmod) have been found in many tissuescontaining smooth muscle by protein immunoblot and immunofluorescencemicroscopy. Both proteins cofractionate with tropomyosin in theTriton-insoluble cytoskeleton of rabbit stomach smooth muscle and aresolubilized by high salt. SM-Lmod binds muscle tropomyosin, abiochemical activity characteristic of Tmod proteins. SM-Lmod stainingis present along the length of actin filaments in rat intestinal smoothmuscle, while Tmod stains in a punctate pattern distinct from that ofactin filaments or the dense body marker -actinin. After smoothmuscle is hypercontracted by treatment with 10 mM Ca2+,both SM-Lmod and Tmod are found near -actinin at the periphery ofactin-rich contraction bands. These data suggest that SM-Lmod is anovel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth musclemay be capped by Tmod in localized clusters.

  相似文献   

3.
Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating α-helices and β-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells.  相似文献   

4.
Polyclonal antibodies were raised in guinea pigs against troponin-T (TnT) isoforms purified from fast- and slow-twitch rabbit muscles. With the use of these antibodies and immunoblots of one- and two-dimensional electrophoreses, the distribution of fast and slow TnT isoforms was investigated in normal and chronically stimulated hindlimb muscles of the rabbit. According to differences in their apparent molecular masses, six fast TnT isoforms (TnTcf, TnT1f, TnT2f, TnT3f, TnT4f, TnT5f) were distinguished in normal tibialis anterior and extensor digitorum longus muscles. These muscles also contained low amounts of TnT1s and TnT2s which were the predominant TnT isoforms in slow-twitch soleus muscle. Fast and slow TnT isoforms were found to exist in several charge variants, i.e. one for TnTcf, three different charge forms for TnT1f, seven for TnT2f, four for TnT3f, three for TnT4f, one for TnT5f, four for TnT1s, and three for TnT2s. Some charge variants were phosphorylated isoforms because treatment with alkaline phosphatase reduced the number of the 19 fast and 7 slow variants to 12 and 3, respectively. The stimulation-induced fast-to-slow transition caused progressive decreases in fast and increases in slow isoforms. The decrease and the disappearance of the major fast isoforms followed a sequence of TnT2f, TnTcf, TnT4f, TnT1f, and TnT3f. This decrease in fast isoforms fits well with the reduction of fast TnT mRNAs assessed by Northern blot analysis. Prolonged stimulation ultimately created a TnT isoform pattern similar to that found in normal slow-twitch muscle. Stimulation also induced changes in the tropomyosin subunit pattern with a decrease in the fast and an increase in the slow alpha-tropomyosin subunit without altering the alpha/beta-tropomyosin subunit ratio. Similar to slow-twitch soleus muscle, long-term stimulated muscles contained appreciable amounts of the fast alpha-tropomyosin subunit, but only traces of fast TnT isoforms. This combination indicated that the predominant slow TnT isoforms may be capable of interacting with fast tropomyosin in these muscles.  相似文献   

5.
Kostyukova AS  Choy A  Rapp BA 《Biochemistry》2006,45(39):12068-12075
Tropomodulin, a tropomyosin-binding protein, caps the slow-growing (pointed) end of the actin filament regulating its dynamics. Tropomodulin, therefore, is important for determining cell morphology, cell movement, and muscle contraction. For the first time we show that one tropomodulin molecule simultaneously binds two tropomyosin molecules in a cooperative manner. On the basis of the tropomodulin solution structure and predicted secondary structure, we introduced a series of point mutations in regions important for tropomyosin binding and actin capping. Capping activity of these mutants was assayed by measuring actin polymerization using pyrene fluorescence. Using direct methods (circular dichroism and native gel electrophoresis) for detecting tropomodulin/tropomyosin binding, we localized the second tropomyosin-binding site to residues 109-144. Despite previous reports that the second binding site is for erythrocyte tropomyosin only, we found that both short nonmuscle and long muscle alpha-tropomyosins bind there as well, though with different affinities. We propose a model for actin capping where one tropomodulin molecule can bind to two tropomyosin molecules at the pointed end.  相似文献   

6.
姜惠杰  孙虎山 《动物学报》2003,49(3):362-369
骨骼肌快肌的收缩主要是由钙离子通过肌钙蛋白所调节控制。这些肌钙蛋白位于肌纤维之中。肌蛋白包括肌钙蛋白T、肌钙蛋白C、肌钙蛋白I。采用双向聚丙烯酰胺凝胶电泳和免疫学技术,对大鼠胚胎、新生大鼠和成年大鼠的骨能肌快肌肌钙蛋白T的同工型进行了研究。在成年大鼠的骨能肌快肌中,发现了10种肌钙蛋白T同工型。在大鼠胚胎和新生大鼠的骨能肌中,发现了7种肌钙蛋白T同工型。作为不同动物、不同发育阶段和不同组织发育的特殊标记,这些肌钙蛋白T同工型具有重要意义[动物学报49(3):362—369,2003]。  相似文献   

7.
The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ~30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction.  相似文献   

8.
The molecular heterogeneity and tissue specificity of crustacean tropomyosin were investigated, using muscle and nonmuscle tissues from the crayfish, Cambarus clarki. In muscle, three types of tropomyosin isoforms were found on two-dimensional gel electrophoresis. One of them was specific to cardiac muscle, and the other two were shared by skeletal and visceral muscles. In nonmuscle tissues, four types of isoforms were found on two-dimensional gel electrophoresis and in immunoreplica tests using an antiserum against crayfish skeletal muscle tropomyosin. Two of them were common to the muscle isoforms, but the other two were not detected in muscles. Furthermore, nonmuscle tissues contained several peculiar isoforms, the electrophoretic mobilities of which were considerably higher than those of the other isoforms mentioned above. When tropomyosin was purified from the mid-gut gland, these isoforms with high mobilities were found in the crude tropomyosin preparation. These results showed that the crayfish tropomyosin was heterogeneous and that the isoforms were distributed in a tissue-specific manner, like vertebrate tropomyosin. However, the results did not coincide with those of our previous study on horseshoe crab tropomyosin, which showed molecular heterogeneity but no tissue specificity. In view of the difference in the isoform distributions between the two major groups (Crustacea and Merostomata) of Arthropoda, the significance of the tissue specificity of tropomyosin isoforms was discussed.  相似文献   

9.
Interaction of tropomyosin with F-actin-heavy meromyosin complex   总被引:1,自引:0,他引:1  
The effect of phosphorylated and dephosphorylated heavy meromyosins (HMMs) saturated with Ca2+ or Mg2+ on the binding of tropomyosin to F-actin and on the conformational changes of tropomyosin on actin was investigated. The experimental data were analysed on the basis of th emodel of cooperative binding of tropomyosin to F-actin with overlapping binding sites. In general, attachment of both HMMs to F-actin increased around 100-fold the tropomyosin-binding affinity but concomittantly reduced the cooperatively of binding. In the presence of Ca2+ and in the absence of ATP the binding of tropomyosin to F-actin in a "doubly contiguous" manner was three-fold stronger for F-actin saturated with dephosphorylated HMM as compared to phosphorylated HMM. Under the same rigor conditions but in the absence of Ca2+ the reverse was true but the difference was about 1.5-fold. The binding stoichiometry of tropomyosin to actin was 7:1 in the presence of dephosphorylated HMM saturated with Ca2+ or phosphorylated-saturated with Mg2+ and tended to be about 6:1 for both after the exchange of the cation bound to myosin heads. Bound HMM was also found to influence the fluorescence polarization of 1,5-IAEDANS-labelled tropomyosin complexed with F-actin in muscle ghost fibres. In the presence of Ca2+, the amount of randomly arranged tropomyosin fluorophores decreased when dephosphorylated HMM was bound to ghost fibres, in contrast to an observed increase in the case of bound phosphorylated HMM. Thus HMM induced conformational changes of tropomyosin in the actin-tropomyosin complex that was reflected in an alteration of the geometrical arrangement between tropomyosin and actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We compared the structure and function of the two Drosophila melanogaster tropomyosin genes. The most striking structural aspect was their size disparity. Codons 1 through 257 of gene 2 occupied 833 nucleotides and contained only one intron, whereas the corresponding region of gene 1 occupied 17.5 kilobases and was interrupted by eight introns. The intron-exon arrangement of gene 1 reflected evolutionary expansion of tropomyosin via 42- and 49-residue duplications, which are probably actin-binding domains. Functionally, gene 1 was considerably more complex than gene 2; it was active in both muscle and nonmuscle cell lineages, had at least five variable exons, and specified a minimum of five developmentally regulated isoforms. Two of these isoforms, which accumulated only in flight muscles, were unprecedented fusion proteins in which the tropomyosin sequence was joined to a carboxy-terminal proline-rich domain.  相似文献   

11.
Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two-dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'-dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.  相似文献   

12.
Leiomodin (Lmod) is a muscle-specific F-actin–nucleating protein that is related to the F-actin pointed-end–capping protein tropomodulin (Tmod). However, Lmod contains a unique ∼150-residue C-terminal extension that is required for its strong nucleating activity. Overexpression or depletion of Lmod compromises sarcomere organization, but the mechanism by which Lmod contributes to myofibril assembly is not well understood. We show that Tmod and Lmod localize through fundamentally different mechanisms to the pointed ends of two distinct subsets of actin filaments in myofibrils. Tmod localizes to two narrow bands immediately adjacent to M-lines, whereas Lmod displays dynamic localization to two broader bands, which are generally more separated from M-lines. Lmod''s localization and F-actin nucleation activity are enhanced by interaction with tropomyosin. Unlike Tmod, the myofibril localization of Lmod depends on sustained muscle contraction and actin polymerization. We further show that Lmod expression correlates with the maturation of myofibrils in cultured cardiomyocytes and that it associates with sarcomeres only in differentiated myofibrils. Collectively, the data suggest that Lmod contributes to the final organization and maintenance of sarcomere architecture by promoting tropomyosin-dependent actin filament nucleation.  相似文献   

13.
The aim of this study is to investigate the function of the C-terminal extension of three troponin I isoforms, that are unique to the body wall muscles of Caenorhabditis elegans and to understand the molecular interactions within the TN complex between troponin I with troponin C/T, and tropomyosin. We constructed several expression vectors to generate recombinant proteins of three body wall and one pharyngeal troponin I isoforms in Escherichia coli. Protein overlay assays and Western blot analyses were performed using antibodies. We demonstrated that pharyngeal TNI-4 interacted with only the pharyngeal isoforms of troponin C/T and tropomyosin. In contrast, the body wall TNI-2 bound both the body wall and pharyngeal isoforms of these components. Similar to other invertebrates, the N-terminus of troponin I contributes to interactions with troponin C. Full-length troponin I was essential for interactions with tropomyosin isoforms. Deletion of the C-terminal extension had no direct effect on the binding of the body wall troponin I to other muscle thin filament troponin C/T and tropomyosin isoforms.  相似文献   

14.
15.
We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two-dimensional gel analysis to have specificities to human EJ TM-3 and TM-5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity-purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel way for the nonmuscle cell to control the stability and organization of microfilaments, and to regulate the cell motility.  相似文献   

16.
Tropomodulin is a human erythrocyte membrane cytoskeletal protein that binds to one end of tropomyosin molecules and inhibits tropomyosin binding to actin filaments [Fowler, V. M. (1990) J. Cell Biol. 111, 471-482]. We have characterized the interaction of erythroid and non-erythroid tropomyosins with tropomodulin by non-denaturing gel electrophoresis and by solid-phase binding assays using 125I-tropomyosin. Non-denaturing gel analysis demonstrates that all tropomodulin molecules are able to bind tropomyosin and that tropomodulin forms complexes with tropomyosin isoforms from erythrocyte, brain, platelet and skeletal muscle tissue. Scatchard analysis of binding data using tropomyosin isoforms from these tissues indicate that tropomodulin binds preferentially to erythrocyte tropomyosin. Specificity is manifested by decreases in the apparent affinity or the saturation binding capacity of tropomodulin for non-erythrocyte tropomyosins. Erythrocyte tropomyosin saturates tropomodulin at approximate stoichiometric ratios of 1:2 and 1:4 tropomyosin/tropomodulin (apparent Kd = 14 nM-1 and 5 nM-1, respectively). Brain tropomyosin saturates tropomodulin at a 1:2 ratio of tropomyosin/tropomodulin, but with a threefold lower affinity than erythrocyte tropomyosin. Platelet tropomyosin saturates tropomodulin at a tropomyosin/tropomodulin ratio of 1:4, but with a sevenfold lower affinity than erythrocyte tropomyosin at the 1:4 ratio. These results correlate with oxidative cross-linking data which indicate that tropomodulin can self-associate to form dimers and tetramers in solution. Since tropomodulin interacts with one of the ends of tropomyosin, varying interactions of tropomyosin isoforms with tropomodulin probably reflect the heterogeneity in N-terminal or C-terminal sequences characteristic of the different tropomyosin isoforms. Isoform-specific interactions of tropomodulin with tropomyosins may represent a novel mechanism for selective regulation of tropomyosin/actin interactions.  相似文献   

17.
Tropomyosin is present in virtually all eucaryotic cells, where it functions to modulate actin-myosin interaction and to stabilize actin filament structure. In striated muscle, tropomyosin regulates contractility by sterically blocking myosin-binding sites on actin in the relaxed state. On activation, tropomyosin moves away from these sites in two steps, one induced by Ca(2+) binding to troponin and a second by the binding of myosin to actin. In smooth muscle and non-muscle cells, where troponin is absent, the precise role and structural dynamics of tropomyosin on actin are poorly understood. Here, the location of tropomyosin on F-actin filaments free of troponin and other actin-binding proteins was determined to better understand the structural basis of its functioning in muscle and non-muscle cells. Using electron microscopy and three-dimensional image reconstruction, the association of a diverse set of wild-type and mutant actin and tropomyosin isoforms, from both muscle and non-muscle sources, was investigated. Tropomyosin position on actin appeared to be defined by two sets of binding interactions and tropomyosin localized on either the inner or the outer domain of actin, depending on the specific actin or tropomyosin isoform examined. Since these equilibrium positions depended on minor amino acid sequence differences among isoforms, we conclude that the energy barrier between thin filament states is small. Our results imply that, in striated muscles, troponin and myosin serve to stabilize tropomyosin in inhibitory and activating states, respectively. In addition, they are consistent with tropomyosin-dependent cooperative switching on and off of actomyosin-based motility. Finally, the locations of tropomyosin that we have determined suggest the possibility of significant competition between tropomyosin and other cellular actin-binding proteins. Based on these results, we present a general framework for tropomyosin modulation of motility and cytoskeletal modelling.  相似文献   

18.
Calcium regulation of muscle contraction.   总被引:5,自引:0,他引:5       下载免费PDF全文
Calcium triggers contraction by reaction with regulatory proteins that in the absence of calcium prevent interaction of actin and myosin. Two different regulatory systems are found in different muscles. In actin-linked regulation troponin and tropomyosin regulate actin by blocking sites on actin required for complex formation with myosin; in myosin-linked regulation sites on myosin are blocked in the absence of calcium. The major features of actin control are as follows: there is a requirement for tropomyosin and for a troponin complex having three different subunits with different functions; the actin displays a cooperative behavior; and a movement of tropomyosin occurs controlled by the calcium binding on troponin. Myosin regulation is controlled by a regulatory subunit that can be dissociated in scallop myosin reversibly by removing divalent cations with EDTA. Myosin control can function with pure actin in the absence of tropomyosin. Calcium binding and regulation of molluscan myosins depend on the presence of regulatory light chains. It is proposed that the light chains function by sterically blocking myosin sites in the absence of calcium, and that the "off" state of myosin requires cooperation between the two myosin heads. Both myosin control and actin control are widely distributed in different organisms. Many invertebrates have muscles with both types of regulation. Actin control is absent in the muscles of molluscs and in several minor phyla that lack troponin. Myosin control is not found in striated vertebrate muscles and in the fast muscles of crustacean decapods, although regulatory light chains are present. While in vivo myosin control may not be excluded from vertebrate striated muscles, myosin control may be absent as a result of mutations of the myosin heavy chain.  相似文献   

19.
1. Tropomyosins were extracted from vertebrate and invertebrate muscles, and their immunolo;ical characteristics were compared using antisera against tropomyosins from chicken skeletal and cardiac muscles. 2. Antigenic sites common to those of chicken skeletal muscle tropomyosin were found in all the tropomyosins tested, although the reactions of these common antigenic sites in an immunodiffusion test were weak in tropomyosins from phylogenetically distant animals. 3. An immunological difference was found between alpha-tropomyosins from chicken cardiac muscle and rabbit cardiac muscle. Thus they had specific antigenic sites in addition to the common ones. 4. A component was found in a 1 M KCL extract of Tetrahymena pyriformis which reacted with antiserum against chicken skeletal muscle tropomyosin.  相似文献   

20.
We investigated the expression of myosin light chains and tropomyosin subunits during chick embryonic development of the anterior (ALD) and posterior (PLD) parts of the latissimus dorsi muscles. As early as day 8 in ovo, both muscles accumulate a common set of myosin light chains (LC) in similar ratios (LC1F: 55 per cent; LC2S: 25 per cent; LC2F: 12 per cent; LC1S: 8 per cent) and a common set of tropomyosin (TM) subunits (beta 2, beta 1, alpha 2F). Later during development, the slow components of the LC regularly disappear in the PLD and the fast components of the LC and the alpha 2FTM disappear in the ALD, so that the adult pattern is almost established at the time of hatching. Thus, early in development, the two muscles accumulate a common set of fast and slow myosin light chains and fast tropomyosin and some isoforms are repressed at a later stage during development. These data might suggest that during development, the regulatory mechanisms of muscle specific isoform expression differ from one contractile protein to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号