首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Phycomyces blakesleeanus wild-type is yellow, because it accumulates beta-carotene as the main carotenoid. A new carotenoid mutant of this fungus (A486) was isolated, after treatment with ethyl methane sulfonate (EMS), showing a whitish coloration. It accumulates large amounts of phytoene, small quantities of phytofluene, zeta-carotene and neurosporene, in decreasing amounts, and traces of beta-carotene. This phenotype indicates that it carries a leaky mutation affecting the enzyme phytoene dehydrogenase (EC 1.3.-.-), which is specified by the gene carB. Biochemical analysis of heterokaryons showed that mutant A486 complements two previously characterized carB mutants, C5 (carB10) and S442 (carB401). Sequence analysis of the carB gene genomic copy from these three strains revealed that they are all altered in the gene carB, giving information about the nature of the mutation in each carB mutant allele. The interallelic complementation provides evidence for the multimeric organization of the P. blakesleeanus phytoene dehydrogenase.  相似文献   

5.
Phytoene synthase, phytoene dehydrogenase and carotene cyclase are three of the four enzyme activities needed to produce the acidic carotenoid neurosporaxanthin from the precursor geranylgeranyl pyrophosphate. In the filamentous fungus Fusarium fujikuroi, these three enzyme activities are encoded by two closely linked genes, carRA and carB, oriented in the same direction in the genome. The two genes are separated by 548 bp and code for two polypeptides of 612 and 541 amino acids, respectively, which are highly similar to the homologous proteins from other filamentous fungi. The ORF of carRA contains a 96-bp insertion that is absent in the other fungal homologues. The 32 additional residues are located in one of the two repeated domains responsible for the cyclase activity in the homologous fungal proteins. We have determined the function of carRA by gene disruption. The resulting mutants were albino and had lost the ability to produce phytoene, as expected from the simultaneous loss of phytoene synthase and carotene cyclase. In the same experiments, we also found transformants in which carB had been deleted. These mutants accumulate phytoene, confirming the function of the gene previously shown by gene-targeted mutagenesis. Expression of carRA and carB is strongly induced by light. Loss of carB or disruption of the carRA ORF led to enhanced expression of the carRA gene, suggesting the existence of a feedback regulatory mechanism.  相似文献   

6.
7.
8.
Weston E  Thorogood K  Vinti G  López-Juez E 《Planta》2000,211(6):807-815
Plants acclimate to changes in light quantity by altering leaf-cell development and the accumulation of chloroplast components, such that light absorption is favoured under limiting illumination, and light utilisation under non-limiting conditions. Previous evidence suggests an involvement of a high-light photosynthetic redox signal in the down-regulation of the accumulation of the light-harvesting complexes of photosystem II (Lhcb) and the expression of the Lhcb genes, and of a blue-light signal in the control of leaf development and in the increase in photosynthetic capacity, as affected by the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We examined the internal anatomy of leaves, the ultrastructure of chloroplasts and accumulation of light-harvesting complexes and Rubisco in wild-type Arabidopsis thaliana (L.) Heynh. and in mutants in each of the three known blue-light photoreceptors, cryptochrome 1, cryptochrome 2 and phototropin, as well as a mutant in both cryptochromes. Our results indicate an extensive capacity of the Arabidopsis mesophyll cells to adapt to high light fluence rate with an increase in palisade elongation. Under high light, chloroplasts showed increased starch accumulation and reductions in the amount of granal thylakoids per chloroplast, in the proportion of chlorophyll b relative to chlorophyll a, and in the accumulation of the major Lhcb polypeptides. The responses were similar for all four mutants, with respect to their wild types. The results are consistent with either a complete redundancy in function between cryptochromes and phototropin, or their absence of involvement in the light-quantity responses tested. We observed minimal effects of light quantity on Rubisco accumulation over the range of fluence rates used, and conclude that elongation of palisade mesophyll cells and accumulation of Rubisco are controlled separately. This indicates that light acclimation must be the result of a number of individual elementary responses. Quantitative differences in the acclimatory responses were observed between the Landsberg erecta and Columbia wild-type ecotypes used. Received: 4 April 2000 / Accepted: 14 July 2000  相似文献   

9.
Phycomyces strain C5, carrying mutation carB10, accumulates phytoene instead of beta-carotene. Heterokaryons containing C5 nuclei and different other nuclei carrying the wild type carB allele accumulate significant amounts of phytofluene, zota-carotene and neurosporene. From quantitative analyses of carotenes and nuclear proportions in the heterokaryons we conclude that four copies of the carB gene product, assembled in an enzyme complex, act sequentially in the conversion of phytoene to lycopene.  相似文献   

10.
We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures.  相似文献   

11.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

12.
13.
14.
15.
16.
Light regulates many developmental and physiological processes in a large number of organisms. The best-known light response in the fungus Mucor circinelloides is the biosynthesis of beta-carotene. Here, we show that M. circinelloides sporangiophores also respond to light, exhibiting a positive phototropism. Analysis of both responses to different light wavelengths within the visible spectrum demonstrated that phototropism is induced by green and blue light, whereas carotenogenesis is only induced by blue light. The blue regulation of both responses suggests the existence of blue-light photoreceptors in M. circinelloides. Three white collar-1 genes (mcwc-1a, mcwc-1b and mcwc-1c) coding for proteins showing similarity with the WC-1 photoreceptor of Neurospora crassa have been identified. All three contain a LOV (light, oxygen or voltage) domain, similar to that present in fungal and plant blue-light receptors. When knockout mutants for each mcwc-1 gene were generated to characterize gene functions, only mcwc-1c mutants were defective in light induction of carotene biosynthesis, indicating that mcwc-1c is involved in the light transduction pathway that control carotenogenesis. We have also shown that positive phototropism is controlled by the mcwc-1a gene. It seems therefore that mcwc-1a and mcwc-1c genes control different light transduction pathways, although cross-talk between both pathways probably exists because mcwc-1a is involved in the light regulation of mcwc-1c expression.  相似文献   

17.
Summary. The accumulation of D-isomers of aspartic acid (D-Asp) in proteins during aging has been implicated in the pathogenesis of Alzheimer’s disease (AD), cataracts and arteriosclerosis. Here, we identified a specific lactacystin-sensitive endopeptidase that cleaves the D-Asp-containing protein and named it D-aspartyl endopeptidase (DAEP). DAEP has a multi-complex structure (MW: 600 kDa) and is localized in the inner mitochondrial membrane. However, DAEP activity was not detected in E. coli, S. cerevisiae, and C. elegans. A specific inhibitor for DAEP, i-DAEP: (benzoyl-L-Arg-L-His-[D-Asp]-CH2Cl; MW: 563.01), was newly synthesized and inhibited DAEP activity (IC50, 3 μM), a factor of ten greater than lactacystin on DAEP. On the other hand, i-DAEP did not inhibit either the 20S or 26S proteasome. And we identified succinate dehydrogenase and glutamate dehydrogenase 1 as components of DAEP by affinity label using biotinylated i-DAEP. In the long life span of mammals, DAEP may serve as a scavenger against accumulation of racemized proteins in aging. Insights into DAEP will provide the foundation for developing treatments of diseases, such as AD, in which accumulation of D-Asp-containing proteins are implicated.  相似文献   

18.
19.
In Myxococcus xanthus, all known carotenogenic genes are grouped together in the gene cluster carB-carA, except for one, crtIb (previously named carC). We show here that the first three genes of the carB operon, crtE, crtIa, and crtB, encode a geranygeranyl synthase, a phytoene desaturase, and a phytoene synthase, respectively. We demonstrate also that CrtIa possesses cis-to-trans isomerase activity, and is able to dehydrogenate phytoene, producing phytofluene and zeta-carotene. Unlike the majority of CrtI-type phytoene desaturases, CrtIa is unable to perform the four dehydrogenation events involved in converting phytoene to lycopene. CrtIb, on the other hand, is incapable of dehydrogenating phytoene and lacks cis-to-trans isomerase activity. However, the presence of both CrtIa and CrtIb allows the completion of the four desaturation steps that convert phytoene to lycopene. Therefore, we report a unique mechanism where two distinct CrtI-type desaturases cooperate to carry out the four desaturation steps required for lycopene formation. In addition, we show that there is a difference in substrate recognition between the two desaturases; CrtIa dehydrogenates carotenes in the cis conformation, whereas CrtIb dehydrogenates carotenes in the trans conformation.  相似文献   

20.
Lysine is a nutritionally important essential amino acid, whose synthesis in plants is strongly regulated by the rate of its synthesis. Yet, lysine level in plants is also finely controlled by a super-regulated catabolic pathway that catabolizes lysine into glutamate and acetyl Co-A. The first two enzymes of lysine catabolism are synthesized from a single LKR/SDH gene. Expression of this gene is subject to compound developmental, hormonal and stress-associated regulation. Moreover, the LKR/SDH gene of different plant species encodes up to three distinct polypeptides: (i) a bifunctional enzyme containing the linked lysine-ketoglutarate (LKR) and saccharopine dehydrogenase (SDH) whose LKR activity is regulated by its linked SDH enzyme; (ii) a monofunctional SDH encoded by an internal promoter, which is a part of the coding DNA region of the LKR/SDH gene; and (iii) a monofunctional, highly potent LKR that is formed by polyadenylation within an intron. LKR activity in the bifunctional LKR/SDH polypeptide is also post-translationally regulated by phosphorylation by casein kinase-2 (CK2), but the consequence of this regulation is still unknown. Why is lysine metabolism super-regulated by synthesis and catabolism? A hypothesis addressing this important question is presented, suggesting that lysine may serve as a regulator of plant growth and interaction with the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号