首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we demonstrated the feasibility of a chemical synthetic lethality screen in cultured human cells. We now demonstrate the principles for a genetic synthetic lethality screen. The technology employs both an immortalized human cell line deficient in the gene of interest, which is complemented by an episomal survival plasmid expressing the wild-type cDNA for the gene of interest, and the use of a novel GFP-based double-label fluorescence system. Dominant negative genetic suppressor elements (GSEs) are selected from an episomal library expressing short truncated sense and antisense cDNAs for a gene likely to be synthetic lethal with the gene of interest. Expression of these GSEs prevents spontaneous loss of the GFP-marked episomal survival plasmid, thus allowing FACS enrichment for cells retaining the survival plasmid (and the GSEs). The dominant negative nature of the GSEs was validated by the decreased resident enzymatic activity present in cells harboring the GSEs. Also, cells mutated in the gene of interest exhibit reduced survival upon GSE expression. The identification of synthetic lethal genes described here can shed light on functional genetic interactions between genes involved in normal cell metabolism and in disease.  相似文献   

2.
3.
CD47 modulates a variety of cell functions such as adhesion, spreading, and migration. Using a fusion protein consisting of the extracellular region of Src homology 2 domain bearing protein tyrosine phosphatase substrate-1 (SHPS-1) and the Fc portion of human Ig (SHPS-1-Ig) we investigated the effects of SHPS-1 as a ligand for CD47 on B lymphocytes. Although SHPS-1-Ig binding to human B cell lines was solely mediated via CD47, their binding capacity for soluble and immobilized SHPS-1-Ig varied among cell lines irrespective of the similar expression levels of CD47, suggesting that distinctive affinity/avidity states exist during B cell maturation. Nalm6 cell line and tonsilar B lymphocytes adhered to immobilized SHPS-1-Ig and showed polarization-like morphology. These effects of SHPS-1-Ig were blocked by anti-CD47 mAbs (B6H12 and SE5A5). Wortmannin, a phosphatidylinositol-3 kinase inhibitor, but not pertussis toxin significantly inhibited the polarization induced by the immobilized SHPS-1-Ig. Thus, SHPS-1 acts as an adhesive substrate via CD47 in human B lymphocyte. Immunohistochemical analyses indicated that SHPS-1 is expressed on high endothelial venule as well as macrophages in human tonsils. HUVECs also express SHPS-1 in the absence of any stimuli, and the adhesion of tonsilar B lymphocytes to nonactivated HUVECs was significantly inhibited by SE5A5, indicating that SHPS-1/CD47 interaction is involved in the adhesion. Our findings suggest that SHPS-1/CD47 interaction may contribute to the recruitment of B lymphocytes via endothelial cells under steady state conditions.  相似文献   

4.
Alzheimer's disease is characterized by numerous amyloid-beta peptide (Abeta) plaques surrounded by microglia. Here we report that Abeta induces the proliferation of the mouse microglial cell line Ra2 by increasing the expression of macrophage colony-stimulating factor (M-CSF). We examined signal cascades for Abeta-induced M-CSF mRNA expression. The induction of M-CSF was blocked by a phosphatidylinositol 3 kinase (PI3-kinase) inhibitor (LY294002), a Src family tyrosine kinase inhibitor (PP1) and an Akt inhibitor. Electrophoretic mobility shift assays showed that Abeta enhanced NF-kappaB binding activity to the NF-kappaB site of the mouse M-CSF promoter, which was blocked by LY294002. These results indicate that Abeta induces M-CSF mRNA expression via the PI3-kinase/Akt/NF-kappaB pathway.  相似文献   

5.
Two closely related proteins, signal regulatory protein alpha (SIRPalpha; SHPS-1/CD172) and SIRPbeta, have been described in humans. The existence of a third SIRP protein has been suggested by cDNA sequence only. We show that this third SIRP is a separate gene that is expressed as a protein with unique characteristics from both alpha and beta genes and suggest that this gene should be termed SIRPgamma. We have expressed the extracellular region of SIRPgamma as a soluble protein and have shown that, like SIRPalpha, it binds CD47, but with a lower affinity (K(d), approximately 23 microM) compared with SIRPalpha (K(d), approximately 2 microM). mAbs specific to SIRPgamma show that it was not expressed on myeloid cells, in contrast to SIRPalpha and -beta, being expressed instead on the majority of T cells and a proportion of B cells. The short cytoplasmic tail of SIRPgamma does not contain any known signaling motifs, nor does it contain a characteristic lysine, as with SIRPbeta, that is required for DAP12 interaction. DAP12 coexpression is a requirement for SIRPbeta surface expression, whereas SIRPgamma is expressed in its absence. The SIRPgamma-CD47 interaction may therefore not be capable of bidirectional signaling as with the SIRPalpha-CD47, but, instead, use unidirectional signaling via CD47 only.  相似文献   

6.
Creatine kinase (CK; EC 2.7.3.2) isoenzymes play prominent roles in energy metabolism. Nuclear genes encode three known CK subunits: cytoplasmic muscle (MCK), cytoplasmic brain (BCK), and mitochondrial (MtCK). We have isolated the gene and cDNA encoding human placental MtCK. By using a dog heart MCK cDNA-derived probe, the 7.0-kb EcoRI fragment from one cross-hybridizing genomic clone was isolated and its complete nucleotide sequence determined. A region of this clone encoded predicted amino acid sequence identical to residues 15-26 of the human heart MtCK NH2-terminal protein sequence. The human placental MtCK cDNA was isolated by hybridization to a genomic fragment encoding this region. The human placental MtCK gene contains 9 exons encoding 416 amino acids, including a 38-amino acid transit peptide, presumably essential for mitochondrial import. Residues 1-14 of human placental MtCK cDNA-derived NH2-terminal sequence differ from the human heart MtCK protein sequence, suggesting that tissue-specific MtCK mRNAs are derived from multiple MtCK genes. RNA blot analysis demonstrated abundant MtCK mRNA in adult human ventricle and skeletal muscle, low amounts in placenta and small intestine, and a dramatic increase during in vitro differentiation induced by serum-deprivation in the non-fusing mouse smooth muscle cell line, BC3H1. These findings demonstrate coordinate regulation of MtCK and cytosolic CK gene expression and support the phosphocreatine shuttle hypothesis.  相似文献   

7.
We found that in MCF-7 breast carcinoma cells, PI3K and Akt suppressed a dose-dependent induction of apoptosis by tumor necrosis factor alpha (TNF). PI3K and Akt stimulated NF-kappaB activation in a dose-dependent manner, suggesting a common link between these two pathways. TNF has been shown to activate both an apoptotic cascade, as well as a cell survival signal through NF-kappaB. PI3K and AKT cell survival signaling were correlated with increased TNF-stimulated NF-kappaB activity in MCF-7 cells. We demonstrate that while both TNFR1 and NIK are partially involved in Akt-induced NF-kappaB stimulation, a dominant negative IkappaBalpha completely blocked Akt-NF-kappaB cross-talk. PI3K-Akt signaling activated NF-kappaB through both TNFR signaling-dependent and -independent mechanisms, potentially representing a mechanism by which Akt functions to suppress apoptosis in cancer.  相似文献   

8.
Human hepatocytes usually are resistant to TNF-alpha cytotoxicity. In mouse or rat hepatocytes, repression of NF-kappaB activation is sufficient to induce TNF-alpha-mediated apoptosis. However, in both Huh-7 human hepatoma cells and Hc human normal hepatocytes, when infected with an adenovirus expressing a mutated form of IkappaBalpha (Ad5IkappaB), which almost completely blocks NF-kappaB activation, >80% of the cells survived 24 h after TNF-alpha stimulation. Here, we report that TNF-alpha activates other antiapoptotic factors, such as sphingosine kinase (SphK), phosphatidylinositol 3-kinase (PI3K), and Akt kinase. Pretreatment of cells with N,N-dimethylsphingosine (DMS), an inhibitor of SphK, or LY 294002, an inhibitor of PI3K that acts upstream of Akt, increased the number of apoptotic cells induced by TNF-alpha in Ad5IkappaB-infected Huh-7 and Hc cells. TNF-alpha-induced activations of PI3K and Akt were inhibited by DMS. In contrast, exogenous sphingosine 1-phosphate, a product of SphK, was found to activate Akt and partially rescued the cells from TNF-alpha-induced apoptosis. Although Akt has been reported to activate NF-kappaB, DMS and LY 294002 failed to prevent TNF-alpha-induced NF-kappaB activation, suggesting that the antiapoptotic effects of SphK and Akt are independent of NF-kappaB. Furthermore, apoptosis mediated by Fas ligand (FasL) involving Akt activation also was potentiated by DMS pretreatment in Hc cells. Sphingosine 1-phosphate administration partially protected cells from FasL-mediated apoptosis. These results indicate that not only NF-kappaB but also SphK and PI3K/Akt are involved in the signaling pathway(s) for protection of human hepatocytes from the apoptotic action of TNF-alpha and probably FasL.  相似文献   

9.
A human gastric intrinsic factor (IF) cDNA clone was isolated using a rat cDNA clone as a probe. Comparison of the predicted amino acid sequence revealed 80% identity of human IF with rat IF. These cDNA clones were used to isolate and map two overlapping clones encoding the human IF gene. The first exon of the cloned region (exon 2) contains 30 bp of the 5' untranslated region, the signal peptide, and the first 8 amino acids of the mature protein. Exons 3-10 encode the remainder of the coding and 3' noncoding regions. Southern analysis of genomic DNA indicated the presence of a single human IF gene and also revealed the presence of strong hybridizing sequences in genomic DNA from monkey, rat, mouse, cow, and human, suggesting that the IF gene is well conserved. The IF gene was localized to human chromosome 11 by concurrent cytogenetic and cDNA probe analysis of a panel of human X mouse somatic cell hybrids. Southern analysis of genomic DNA from patients with congenital pernicious anemia (lacking intrinsic factor) revealed normal restriction fragment patterns, suggesting that a sizable gene deletion was not responsible for the deficiency.  相似文献   

10.
Signal regulatory protein alpha (SIRPalpha, SHPS-1) is a plasma membrane receptor for CD47 and a key regulator of phagocytosis, growth factor signaling, and migration. Phosphorylation of immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail is essential for the functional effects of SIRPalpha, at least in part, because the phosphorylated immunoreceptor tyrosine-based inhibition motifs recruit Src homology 2 domain-containing tyrosine phosphatases. Ligation by CD47 and integrin engagement both have been thought to regulate SIRPalpha phosphorylation. However, their distinct contributions have not been distinguished. Here, we show that the importance of CD47 varies with cell type, since ligation of CD47 is not necessary for SIRPalpha phosphorylation in myeloid cells, whereas it is required in endothelial cells. In contrast, integrin-mediated adhesion is required for SIRPalpha phosphorylation in both cell types. This shows that SIRPalpha phosphorylation is dually regulated and demonstrates a new mechanism for functional cooperation between integrins and the integrin-associated protein CD47.  相似文献   

11.
12.
13.
14.
Sphingosine 1-phosphate (S1P) has been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. S1P increases the expression of several proteins including COX-2 in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating COX-2 expression by S1P in VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced the expression of COX-2 mRNA and protein in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and PI3K (wortmannin), and transfection with dominant negative mutants of p42/p44 mitogen-activated protein kinases (ERK2) or Akt. These results suggested that both p42/p44 MAPK and PI3K/Akt pathways participated in COX-2 expression induced by S1P in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt, which was attenuated by U0126, LY294002, or wortmannin, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by a selective NF-kappaB inhibitor helenalin. Consistently, S1P-stimulated translocation of NF-kappaB into the nucleus was revealed by immnofluorescence staining. Moreover, S1P-stimulated activation of NF-kappaB promoter activity was blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and helenalin, but not by U0126, suggesting that involvement of PI3K/Akt in the activation of NF-kappaB. COX-2 promoter assay showed that S1P induced COX-2 promoter activity mediated through p42/p44 MAPK, PI3K/Akt, and NF-kappaB. These results suggested that in VSMCs, activation of p42/p44 MAPK, Akt and NF-kappaB pathways was essential for S1P-induced COX-2 gene expression. Understanding the mechanisms involved in S1P-induced COX-2 expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

15.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

16.
17.
Li C  Rodriguez M  Adamson JW  Banerjee D 《Genomics》2000,65(3):243-252
Vascular endothelial cells (VEC) transduce mitogenic and chemoattractant signals in response to erythropoietin (Epo). An analysis of changes in gene expression in VEC would be helpful to understanding the molecular nature of mitogenic signals. An effective method for analysis of gene expression is through differential display. Using this approach, we obtained from Epo-treated human microvascular endothelial cells (HMVEC) a cDNA fragment with characteristics of the 3'end of mRNA. Using the cDNA fragment, we then isolated a full-length clone from a HMVEC cDNA library. The cDNA of interest encodes a protein consisting of 404 amino acids with a carboxy-terminal end sequence identical to glialblastoma cell differentiation factor-related protein (GBDR1). Northern blot analysis showed that GBDR1 mRNA was ubiquitously expressed in human tissues. In Southern blot analysis, GBDR1 cDNA identified a single gene on chromosome 9. Since analysis of the amino acid sequence revealed several putative phosphorylation sites for different protein kinases, the GBDR1 protein was expressed and purified from bacterial extracts and, as predicted, casein kinase II phosphorylated GBDR1 in vitro. Immunofluorescence and biochemical data revealed that the GBDR1 protein is not entirely localized in the cytosolic fraction, suggesting that it may interact with another protein(s). These findings demonstrate that GBDR1 is an intracellular signaling molecule that may play a role in the regulation of endothelial cell growth.  相似文献   

18.
We have identified mitochondrial adenine nucleotide translocase (ANT)3 as a novel target up-regulated by IL-4 in human T cells. The IL-4-induced ANT3 expression is dependent on tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk pathways. In fact, IL-4 induced specific activation of NF-kappaB, Akt, and Erk in Jurkat T cells and partially rescued these cells from dexamethasone-induced apoptosis. The IL-4-mediated T cell survival was blocked by inhibitors of tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk. During the IL-4-induced T cell rescue, there was a concomitant increase in ANT3, nuclear NF-kappaB, and Bcl-2 and a decrease in ANT1, I-kappaB, and mitochondrial Bax-alpha levels. Importantly, overexpression of ANT3 effectively protected T cells from dexamethasone-induced apoptosis, while forced expression of ANT1 caused apoptosis. In contrast, siRNA knock-out of ANT3 expression induced T cell apoptosis and blocked the IL-4-mediated cell survival. Together these results suggest that ANT3 has a potential role in Th cell survival and immune cell homeostasis.  相似文献   

19.
Four members of the endothelin family of vasoactive and mitogenic peptides have been identified: human endothelins 1, 2, and 3 (ET1, ET2, and ET3, respectively) and mouse vasoactive intestinal contractor (VIC). To characterize the mRNA encoding ET2, a 192-bp fragment of the ET2 gene, amplified by the polymerase chain reaction from human genomic DNA, was used to screen cell lines and tissues for ET2 gene expression. ET2 mRNA was detected in a cell line (HTB119) derived from a human lung small cell carcinoma, and an ET2 cDNA was cloned from a cDNA library prepared from HTB119 mRNA. DNA prepared from human-mouse somatic hybrid cell lines was used to assign the gene encoding ET2 (EDN2) to the 1p21----1pter region of chromosome 1, demonstrating that EDN2 is not linked to genes encoding ET1 (EDN1; chromosome 6) and ET3 (EDN3; chromosome 20). Southern blot hybridization revealed a single gene in human and rat genomes that hybridized with the ET2 gene fragment, and the rat gene was cloned. The endothelin peptide encoded by the rat gene differed from ET2 at 1 of 21 residues and was identical to mouse VIC. We conclude that VIC is the mouse and rat analogue of the human ET2 gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号