首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV感染中的细胞凋亡   总被引:3,自引:0,他引:3  
CD4^ T细胞的丢失在HIV感染引起免疫缺陷过程中起着重要作用。但造成CD4^ T细胞丢失的具体机制还不清楚,细胞凋亡可能是CD4^ T细胞丢失的一个重要因素,HIV感染以后,病毒蛋白的持续性产出导致免疫系统的持续性激活,引起Th1细胞的丢失,Th1细胞通过合成Ⅰ型细胞因子,抑制淋巴细胞的自发凋亡,另外,病毒蛋白或其他因素能够使CD4^ ,CD8^ T细胞和APC转化为凋亡的效应细胞,通过Fas/FasL或其他途径引起细胞凋亡,HIV感染人体后凋亡细胞不仅有CD4^ T细胞,还包括B细胞,NK细胞,粒细胞,神经细胞和单细胞,凋亡作为机体的自我防护措施,在清除感染细胞的同时,并没有抑制HIV在单细胞/巨噬细胞内的复制,反而造成大量未感染细胞的凋亡,导致对HIV复制的失控,发展为严重的免疫缺陷,引起AIDS相关的机会性感染。  相似文献   

2.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

3.
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.  相似文献   

4.
5.

HIV preferentially infects activated CD4+ T cells. Current antiretroviral therapy cannot eradicate the virus. Viral infection of other cells such as macrophages may contribute to viral persistence during antiretroviral therapy. In addition to cell-free virus infection, macrophages can also get infected when engulfing infected CD4+ T cells as innate immune sentinels. How macrophages affect the dynamics of HIV infection remains unclear. In this paper, we develop an HIV model that includes the infection of CD4+ T cells and macrophages via cell-free virus infection and cell-to-cell viral transmission. We derive the basic reproduction number and obtain the local and global stability of the steady states. Sensitivity and viral dynamics simulations show that even when the infection of CD4+ T cells is completely blocked by therapy, virus can still persist and the steady-state viral load is not sensitive to the change of treatment efficacy. Analysis of the relative contributions to viral replication shows that cell-free virus infection leads to the majority of macrophage infection. Viral transmission from infected CD4+ T cells to macrophages during engulfment accounts for a small fraction of the macrophage infection and has a negligible effect on the total viral production. These results suggest that macrophage infection can be a source contributing to HIV persistence during suppressive therapy. Improving drug efficacies in heterogeneous target cells is crucial for achieving HIV eradication in infected individuals.

  相似文献   

6.
There is evidence that the initial interaction between HIV-1 and the host that is essential for infection is the specific binding of the viral envelope glycoprotein, gp120, to the CD4 molecule found on certain T cells and monocytes. Most individuals infected with HIV develop antibodies against the gp120 protein. Although in vitro treatment of CD4+ T cells with mAb to a specific epitope of the CD4 molecule (T4a) blocks virus binding, syncytia formation, and infectivity, it is unclear if antibodies to gp120 from an infected individual that can inhibit the binding of gp120 to CD4 is in any way related to the clinical course of disease. Our present study characterizes the binding of 125I-labeled rgp120 to CD4+ cells, and describes an assay system that measures a potentially relevant form of immunity to HIV infection, i.e., the blocking of HIV binding to CD4+ cells. Optimal binding conditions included a 2-h incubation at 22 degrees C, 4 x 10(6) CD4+ cells, and 1 nM gp120. The dissociation constant (KD) for gp120 binding to cell surface CD4 was 5 nM, and was inhibited by soluble CD4 and by mAb to T4a but not to T3 or T4. For the binding inhibition assay, negative controls included healthy seronegatives, seronegatives with connective tissue diseases, patients with HTLV-1 disease, and patients infected with HIV-2. In studying over 100 sera, the assay was highly sensitive (98%) and specific (100%). The majority of HIV+ sera could inhibit binding at dilutions of 1/100 to 1/1000. No correlation was noted between binding inhibition (BI) titer in this assay and clinical stage of HIV infection. In addition, there was no correlation between BI titer and HIV neutralizing activity. The BI titer was correlated with the titer of anti-gp160 (r = 0.63) and the titer of anti-gp120 (r = 0.52) antibodies determined by Western blot dilution. As with neutralizing antibodies and other forms of immune response to HIV, it is unclear what role antibody blocking of HIV binding to CD4+ cells may play in active immunity to HIV in infected individuals. This activity may prove to have some value in protection against initial HIV infection and, thus, the assay may be of use in monitoring vaccine trials.  相似文献   

7.
Upon transmission to a new host, HIV targets CCR5+ CD4+ effector memory T cells, resulting in acute, massive depletion of these cells from mucosal effector sites. This depletion does not initially compromise the regenerative capacity of the immune system because naive and most central memory T cells are spared. Here, we discuss evidence suggesting that frequent activation of these spared cells during the chronic phase of HIV infection supplies mucosal tissues with short-lived CCR5+ CD4+ effector cells that prevent life-threatening infections. This immune activation also facilitates continued viral replication, but infection and killing of target T cells by HIV are selective and the impact on effector-cell lifespan is limited. We propose, however, that persistent activation progressively disrupts the functional organization of the immune system, reducing its regenerative capacity and facilitating viral evolution that leads to loss of the exquisite target cell-sparing selectivity of viral replication, ultimately resulting in AIDS.  相似文献   

8.
Despite an extensive knowledge of the molecular characteristics of the human immunodeficiency virus (HIV) identified more than ten years ago as the cause of AIDS (acquired immune deficiency syndrome) (Barre-Sinoussi et al. 1983) some critical questions have not been answered yet: Is the progressive disappearance of CD4+ helper T lymphocytes, the hallmark of AIDS, directly related to the killing of infected cells by the virus? If not, how do CD4+T cells die? Is HIV using its viral factory to kill uninfected bystander cells? What causes the immune system collapse in HIV infection? In the past three years some important studies have provided stimulating clues suggesting that AIDS is not only related to the killing of host cells by HIV but is also a consequence of mechanisms of misactivation of the immune system, leading to anergy or apoptosis of non-infected effector cells. We discuss some of the in vivo and in vitro models providing evidence that HIV is able to kill and cripple the immune system either by acting directly on its targets or indirectly in bystander T cells keeping in mind that HIV disease must be considered as a multifactorial process.  相似文献   

9.
CD4+CD25+FoxP3+ regulatory T cells are decreased in patients infected with HIV and have been shown to be critical in mediating Ag tolerance in the lung. Because a subset of Pneumocystis-infected individuals develop substantial lung injury, which can be modeled in immune reconstituted scid mice, we used mouse models of Pneumocystis carinii to investigate the role of regulatory T cells in opportunistic infection and immune reconstitution. In this study, we show that CD4+CD25+FoxP3+ cells are part of the host response to Pneumocystis in CD4+ T cell-intact mice. Moreover, lung injury and proinflammatory Th1 and Th2 cytokine levels in the bronchoalveolar lavage fluid and lung homogenate were increased following CD4+CD25- immune reconstitution in Pneumocystis-infected SCID mice but not in CD4+CD25+ T cell-reconstituted animals. The ability of CD4+CD25+ T cells to control inflammation and injury during the course of Pneumocystis was confirmed by treatment of wild-type C57BL/6 mice with anti-CD25 mAb. These data show that CD4+CD25+ T cells control pulmonary inflammation and lung injury associated with Pneumocystis infection both in the setting of immune reconstitution as well as new acquisition of infection.  相似文献   

10.
Identifying early predictors of infection outcome is important for the clinical management of HIV infection, and both viral load and CD4+ T cell level have been found to be useful predictors of subsequent disease progression. Very high viral load or extensively depleted CD4+ T cells in the acute phase often result in failure of immune control, and a fast progression to AIDS. It is usually assumed that extensive loss of CD4+ T cells in the acute phase of HIV infection prevents the establishment of robust T cell help required for virus control in the chronic phase. We tested this hypothesis using viral load and CD4+ T cell number of SHIV-infected rhesus macaques. In acute infection, the lowest level of CD4+ T cells was a good predictor of later survival; animals having less than 3.3% of baseline CD4+ T cells progressed to severe disease, while animals with more than 3.3% of baseline CD4+ T cells experienced CD4+ T cell recovery. However, it is unclear if the disease progression was caused by early depletion, or was simply a result of a higher susceptibility of an animal to infection. We derived a simple relationship between the expected number of CD4+ T cells in the acute and chronic phases for a constant level of host susceptibility or resistance. We found that in most cases, the depletion of CD4+ T cells in chronic infection was consistent with the prediction from the acute CD4+ T cell loss. However, the animals with less than 3.3% of baseline CD4 T cells in the acute phase were approximately 20% more depleted late in the infection than expected based on constant level of virus control. This suggests that severe acute CD4 depletion indeed impairs the immune response.  相似文献   

11.
Regulatory T (Treg) cells may attenuate host immune responses to pathogens, including HIV and opportunistic pathogens in HIV-infected patients. Treated and untreated progressive HIV disease represent a range of immunological scenarios with potentially different roles for Treg cells. A cell surface marker to determine Treg cell numbers would assist in identifying situations where Treg cells are important. Here we show that levels of Foxp3 mRNA are increased in CD4+ T cells from HIV-infected patients responding to antiretroviral therapy. However, the proportion of peripheral blood CD4+ and CD8+ T cells expressing CD25, neuropilin-1, glucocorticoid-induced TNF receptor and lymphocyte activation gene-3 did not differ as a result of treated or untreated HIV infection when compared with HIV-seronegative controls. Hence, none of the putative Treg cell surface markers identified T-cell populations in peripheral blood that mirrored the effects of HIV infection and antiretroviral therapy on Foxp3 expression.  相似文献   

12.
Listeria monocytogenes is a facultative intracellular bacterium that lives and grows in the cytoplasm of the host cell. The hallmark of a listerial infection is a cell-mediated immune response to its own secreted virulence factors. Thus, L. monocytogenes vaccines engineered to secrete HIV proteins may be ideal vectors for boosting cellular immune responses against HIV. Using strains of L. monocytogenes that stably express and secrete HIV Gag (Lm-Gag) to deliver this Ag to the immune system, we have previously shown strong MHC class I-restricted cytotoxic T cell responses to this protein. In this study, we examine MHC class II-restricted T cell responses to HIV-Gag delivered by Lm-Gag. We demonstrate the induction of CD4+ T cells that are HIV-Gag specific and identify three epitopes in two strains of mice, BALB/c (H-2d) and C57BL/6 (H-2b), two of which are both H-2d and H-2b restricted, but are not immunodominant for both haplotypes. In addition, we show that the CD4+ T cells induced are of the Th1 phenotype that produce IFN-gamma at levels similar to CD4+ T cells induced to endogenous listerial Ags. These studies suggest that chromosomally modified strains of L. monocytogenes may be useful as vaccine vectors for the induction of Th1 T cell responses against HIV.  相似文献   

13.
CD4+ T-cell death is a crucial feature of AIDS pathogenesis, but the mechanisms involved remain unclear. Here, we present in vitro findings that identify a novel process of HIV1 mediated killing of bystander CD4+ T cells, which does not require productive infection of these cells but depends on the presence of neighboring dying cells. X4-tropic HIV1 strains, which use CD4 and CXCR4 as receptors for cell entry, caused death of unstimulated noncycling primary CD4+ T cells only if the viruses were produced by dying, productively infected T cells, but not by living, chronically infected T cells or by living HIV1-transfected HeLa cells. Inducing cell death in HIV1-transfected HeLa cells was sufficient to obtain viruses that caused CD4+ T-cell death. The addition of supernatants from dying control cells, including primary T cells, allowed viruses produced by living HIV1-transfected cells to cause CD4+ T-cell death. CD4+ T-cell killing required HIV1 fusion and/or entry into these cells, but neither HIV1 envelope-mediated CD4 or CXCR4 signaling nor the presence of the HIV1 Nef protein in the viral particles. Supernatants from dying control cells contained CD95 ligand (CD95L), and antibody-mediated neutralization of CD95L prevented these supernatants from complementing HIV1 in inducing CD4+ T-cell death. Our in vitro findings suggest that the very extent of cell death induced in vivo during HIV1 infection by either virus cytopathic effects or immune activation may by itself provide an amplification loop in AIDS pathogenesis. More generally, they provide a paradigm for pathogen-mediated killing processes in which the extent of cell death occurring in the microenvironment might drive the capacity of the pathogen to induce further cell death.  相似文献   

14.
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.  相似文献   

15.
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention.  相似文献   

16.
Morphine administered as a subcutaneous implant inhibits the initial increase in cytoplasmic free-calcium [Ca2+]i induced by mitogens in mouse splenocytes. This effect was not reproduced by incubation of splenocytes with morphine (10(-8)-10(-4) M). Analysis of splenocyte subpopulations demonstrates that this effect was manifest in both B and T cells. However, within T cell subpopulations, CD4+ but not CD8+ cells were affected. Adrenalectomy abolished this effect of morphine in CD4+ T but not CD4-, CD8- spleen cells (most likely Thy 1.2- B cells). Moreover, simultaneous administration of the opiate antagonist naltrexone blocked the effect of morphine in CD4-, CD8- spleen cells, but not in CD4+ T cells. These data indicate that the effects of morphine on mitogen-stimulated increase in [Ca2+]i may be mediated through distinct glucocorticoid-dependent and -independent mechanisms. The morphine-induced inhibition of an increase in [Ca2+]i in immune cells reported here may be an early event mediating opiate-induced immunosuppression.  相似文献   

17.
Although chronic immune activation correlates with CD4(+) T cell loss in HIV infection, an understanding of the factors mediating T cell depletion remains incomplete. We propose that reduced expression of CD127 (IL-7 receptor alpha chain, IL-7Ralpha), induced by immune activation, contributes to CD4(+) T cell loss in HIV infection. In particular, loss of CD127 on central memory CD4(+) T cells (T(CM)) severely restrains the regenerative capacity of the memory component of the immune system, resulting in a limited ability to control T cell homeostasis. Studies from both pathogenic and controlled HIV infection indicate that the containment of immune activation and preservation of CD127 expression are critical to the stability of CD4(+) T cells in infection. A better understanding of the factors regulating CD127 expression in HIV disease, particularly on T(CM) cells, might unveil new approaches exploiting the IL-7/IL-7R receptor pathway to restore T cell homeostasis and promote immune reconstitution in HIV infection.  相似文献   

18.
The common gamma chain (gammac)-sharing cytokines (IL's-2, 4, 7, 9, 15, and 21) play a vital role in the survival, proliferation, differentiation and function of T lymphocytes. As such, disruption of their signaling pathways would be expected to have severe consequences on the integrity of the immune system. Indeed, it appears that the signaling network of these cytokines is both disrupted and exploited by HIV at various stages of infection. IL-2 secretion and signaling downstream of its receptor are impaired in T cells from chronically-infected HIV+ patients. Elevated plasma IL-7 levels and decreased IL-7Ralpha expression in patient T cells results in significantly decreased responsiveness to this critical cytokine. Interestingly, IL-2 and IL-15 are also able to render CD4+ T cells permissive to HIV infection through their influence on the activity of the APOBEC3G deaminase enzyme. Herein, we describe the current state of knowledge on how the gammac cytokine network is affected during HIV infection, with a focus on how this impairs CD4+ and CD8+ T cell function while also benefiting the virus itself. We also address the use of cytokines as adjuncts to highly active antiretroviral therapy to bolster immune reconstitution in infected patients.  相似文献   

19.

Background

The influence of tobacco smoking on the immune system of HIV infected individuals is largely unknown. We investigated the impact of tobacco smoking on immune activation, microbial translocation, immune exhaustion and T-cell function in HIV infected individuals.

Method

HIV infected smokers and non-smokers (n = 25 each) with documented viral suppression on combination antiretroviral therapy and HIV uninfected smokers and non-smokers (n = 15 each) were enrolled. Markers of immune activation (CD38 and HLA-DR) and immune exhaustion (PD1, Tim3 and CTLA4) were analyzed in peripheral blood mononuclear cells (PBMCs) by flow cytometry. Plasma markers of microbial translocation (soluble-CD14 - sCD14 and lipopolysaccharide - LPS) were measured. Antigen specific functions of CD4+ and CD8+ T-cells were measured, by flow cytometry, in PBMCs after 6 hours stimulation with Cytomegalovirus, Epstein-Barr virus and Influenza Virus (CEF) peptide pool.

Results

Compared to non-smokers, smokers of HIV infected and uninfected groups showed significantly higher CD4+ and CD8+ T-cell activation with increased frequencies of CD38+HLA-DR+ cells with a higher magnitude in HIV infected smokers. Expressions of immune exhaustion markers (PD1, Tim3 and CTLA4) either alone or in combinations were significantly higher in smokers, especially on CD4+ T-cells. Compared to HIV uninfected non-smokers, microbial translocation (sCD14 and LPS) was higher in smokers of both groups and directly correlated with CD4+ and CD8+ T-cell activation. Antigen specific T-cell function showed significantly lower cytokine response of CD4+ and CD8+ T-cells to CEF peptide-pool stimulation in smokers of both HIV infected and uninfected groups.

Conclusions

Our results suggest that smoking and HIV infection independently influence T-cell immune activation and function and together they present the worst immune profile. Since smoking is widespread among HIV infected individuals, studies are warranted to further evaluate the cumulative effect of smoking on impairment of the immune system and accelerated disease progression.  相似文献   

20.
HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127(dim)), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected "non-controllers" with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P ≤ 0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号