首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become large and multinucleate, and eventually lyze, supporting the idea that myosin II plays critical roles in cytokinesis. These mutant cells are however viable on substrates. Detailed analyses of these mutant cells on substrates revealed that, in addition to "classic" cytokinesis which depends on myosin II ("cytokinesis A"), Dictyostelium has two distinct, novel methods of cytokinesis, 1) attachment-assisted mitotic cleavage employed by myosin II null cells on substrates ("cytokinesis B"), and 2) cytofission, a cell cycle-independent division of adherent cells ("cytokinesis C"). Cytokinesis A, B, and C lose their function and demand fewer protein factors in this order. Cytokinesis B is of particular importance for future studies. Similar to cytokinesis A, cytokinesis B involves formation of a cleavage furrow in the equatorial region, and it may be a primitive but basic mechanism of efficiently bisecting a cell in a cell cycle-coupled manner. Analysis of large, multinucleate myosin II null cells suggested that interactions between astral microtubules and cortices positively induce polar protrusive activities in telophase. A model is proposed to explain how such polar activities drive cytokinesis B, and how cytokinesis B is coordinated with cytokinesis A in wild type cells.  相似文献   

2.
Group a mutants of Clostridium perfringens are deficient in theta toxin but release a dialyzable substance ("substance A"), which restores theta toxin activity to group b mutants, into a culture supernatant; group b mutants are defective in "substance A" release. "Substance A" activity appeared in the exponentially growing phase of group a mutants and disappeared in the stationary phase. "Substance A" activity was most stable at pH 5.0 and 0 C and even increased threefold in the first 5 hr, but gradually decreased during the following 15 hr. It was quickly inactivated at neutral and higher pHs at 0 C.  相似文献   

3.
Bats in the northeastern U.S. are affected by geomycosis caused by the fungus Geomyces destructans (Gd). This infection is commonly referred to as White Nose Syndrome (WNS). Over a million hibernating bats have died since the fungus was first discovered in 2006 in a cave near Albany, New York. A population viability analysis conducted on little brown bats (Myotis lucifugus), one of six bat species infected with Gd, suggests regional extinction of this species within 20 years. The fungus Gd is a psychrophile ("cold loving"), but nothing is known about how it thrives at low temperatures and what pathogenic attributes allow it to infect bats. This study aimed to determine if currently available antifungal drugs and biocides are effective against Gd. We tested five Gd strains for their susceptibility to antifungal drugs and high-throughput screened (HTS) one representative strain with SpectrumPlus compound library containing 1,920 compounds. The results indicated that Gd is susceptible to a number of antifungal drugs at concentrations similar to the susceptibility range of human pathogenic fungi. Strains of Gd were susceptible to amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole. In contrast, very high MICs (minimum inhibitory concentrations) of flucytosine and echinocandins were needed for growth inhibition, which were suggestive of fungal resistance to these drugs. Of the 1,920 compounds in the library, a few caused 50%--to greater than 90% inhibition of Gd growth. A number of azole antifungals, a fungicide, and some biocides caused prominent growth inhibition. Our results could provide a theoretical basis for future strategies aimed at the rehabilitation of most affected bat species and for decontamination of Gd in the cave environment.  相似文献   

4.
We have examined the mechanism of action of two natural products identified as broad spectrum antifungal agents (VanMiddlesworth, F., Dufresne, C., Wincott, F. E., Mosley, R. T., and Wilson, K. E. (1992) Tetrahedron Lett., in press; VanMiddlesworth, F., Giacobbe, R. A., Lopez, M. Garrity, G., Bland, J. A., Bartizal, K., Fromtling, R. A., Polishook, J., Zweerink, M. M., Edison, A. M., Rozdilsky, W., Wilson, K. E., and Monaghan, R. L. (1992) J. Antibiot. (Tokyo) 45, 861-867), designated sphingofungin B (2S-amino-3R,4R,5S,14-tetrahydroxyeicos-6-enoic acid) and sphingofungin C (2S-amino-5S-acetoxy-3R,4R,14-trihydroxyeicos-6-enoic acid), and find they are potent specific inhibitors of serine palmitoyltransferase, which catalyze the committed step of sphingolipid biosynthesis. We used Saccharomyces cerevisiae as a model to investigate the mechanism of the antifungal activity of these compounds. Macromolecular synthesis was not immediately affected by either sphingofungin B or C, synthesis continued for 60-90 min following the addition of drug to growing cultures. Significant loss of viability with sphingofungins required growing cultures and began only after several hours, with greater than 99.9% of drug-treated cells non-viable after 24 h. No lysis or other gross changes in cell morphology were observed in drug-treated cells. The structural similarity of sphingofungin B and C to sphingosine and phytosphingosine prompted us to investigate their effects on sphingolipid synthesis. Nanomolar levels of the drugs inhibited the incorporation of [3H]inositol into sphingolipid before incorporation into the sphingolipid precursor, phosphatidylinositol was affected, suggesting specific inhibition of sphingolipid synthesis. This hypothesis was confirmed by experiments in which the growth inhibitory activity of both drugs was completely ablated by the addition of phytosphingosine, dihydrosphingosine, or ketodihydrosphingosine to the culture medium. Reversal of antifungal activity by ketodihydrosphingosine suggested that serine palmitoyltransferase could be the actual target of these compounds. Direct evidence for this hypothesis was the observation of inhibition of serine palmitoyltransferase activity in crude membrane preparations at nanomolar concentrations of each drug. The potent inhibition of serine palmitoyltransferase coupled with the apparent lack of effect of these compounds on other cellular functions suggests that sphingofungin B and C will prove to be important new tools for studying the role of sphingolipids in yeast and perhaps in other organisms.  相似文献   

5.
A series of 4-(6-substituted-1,3-benzothiazol-2-yl)amino-2-(4-substitutedphenyl)- amino-1,3-thiazoles, 9-24 have been synthesised from 2-chloro-N-(6-substituted-1,3-benzothiazol-2-yl)acetamides, 5-8. The structures of these compounds have been elucidated by spectral (IR, (1)H NMR, Mass) and elemental (C, H, N) analysis data. All the newly synthesised compounds (9-24) were screened for their antibacterial, antifungal and anthelmintic activities. Almost all of these compounds showed moderate to good antimicrobial activity against two gram negative bacteria (E. coli, P. aeruginosa), two gram positive bacteria (S. aureus, B. subtilis), pathogenic fungal strains (C. albicans, A. niger) and good anthelmintic activity against earthworm species (P. corethruses). Compounds 18 and 20 exhibited good antibacterial and antifungal activities, while compound 22 displayed the most significant anthelmintic activity.  相似文献   

6.
Schiff bases (imines or azomethines) are versatile ligands synthesized from the condensation of amino compounds with active carbonyl groups and used for many pharmaceutical and medicinal applications. In our study, we aimed to determine the cytotoxic, antifungal and larvicidal activities of biologically potent bis-sulfonamide Schiff base derivatives that were re-synthesized by us. For this aim, 16 compounds were re-synthesized and tested for their cytotoxic, antifungal and larvicidal properties. Among this series, compounds A1B2 , A1B4 , A4B2 , A4B3 , and A4B4 were shown to have cytotoxic activity against tested cancer lung cell line (A549). The most potent antifungal activity was observed in compounds A2B1 and A2B2 against all fungi. A1B1 showed the strongest larvicidal effect at all concentrations at the 72nd h (100% mortality). These obtained results demonstrate that these type of bis-substituted compounds might be used as biologically potent pharmacophores against different types of diseases.  相似文献   

7.
New series of pyrazoles 4a – c and pyrazolopyrimidines 5a – f had been constructed. The newly synthesized compounds were assessed for their antimicrobial activity towards E. coli and P. aeruginosa (gram –ve bacteria), B. subtilis and S. aureus (gram +ve bacteria) and A. flavus and C. albicans (representative of fungi). The pyrazolylpyrimidine-2,4-dione derivative 5b is the most active candidate against B. subtilis (MIC=60 μg/mL) and P. aeruginosa (MIC=45 μg/mL). Regarding antifungal potential, compound 5f was the most effective against A. flavus (MIC=33 μg/mL). Similarly, compound 5c displayed strong antifungal activity towards C. Albicans (MIC=36 μg/mL) in reference to amphotericin B (MIC=60 μg/mL). Finally, the novel compounds had been docked inside dihydropteroate synthase (DHPS) to suggest the binding mode of these compounds.  相似文献   

8.
A new series of 4-({[2, 4-dioxo-2H-chromen-3 (4H)-ylidene] methyl} amino) sulfonamides have been obtained by the condensation reaction of 4-hydroxycoumarin with various sulfonamides (sulfanilamide, sulfaguanidine, p-aminomethyl-sufanilamide, p-aminoethylsufanilamide, sulfathiazole, sulfamethoxazole, sulfamethazine and 4-[(2-amino-4-pyrimidinyl) amino] benzenesulfonamide) in the presence of an excess of ethylorthoformate. These compounds were screened for their in-vitro antibacterial activity against four Gram-negative (E. coli, S. flexneri, P. aeruginosa and S. typhi) and two Gram-positive (B. subtilis and S. aureus) bacterial strains and for in-vitro antifungal activity against T. longifusus, C. albicans, A. flavus, M. canis, F. solani and C. glaberata. Results revealed that a significant antibacterial activity was observed by compounds (4) and (5), (6) and (8) against two Gram-negative, (P. aeruginosa and S. typhi) and two Gram-positive (B. subtilis and S. aureus) species, respectively. Of these (4) was found to be the most active. Similarly, for antifungal activity compounds (3) and (8) showed significant activity against M. canis and, (6) and (8) against F. solani. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties and only two compounds, (4) and (8) possessing LD50 = 2.9072 x 10(-4) and 3.2844 x 10(-4) M, respectively, displayed potent cytotoxic activity against Artemia salina  相似文献   

9.
Synthesis, characterization and biological studies of Schiff base-derived sulfonamides and their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been reported and screened for in-vitro antibacterial activity against six Gram-negative; E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis, S. typhi and S. dysenteriae and four Gram-positive; B. cereus, C. diphtheriae, S. aureus and S. pyogenes bacterial strains and for in-vitro antifungal activity against T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glaberata. All compounds showed moderate to significant antibacterial activity, however, the zinc (II) complexes were found to be more active. Some of the compounds also showed significant antifungal activity against various fungal strains. Only compounds (6) and (10) displayed potent cytotoxic activity with LD(50) = 4.644 x 10(- 4) and 4.106 x 10(- 4) moles/mL respectively, against Artemia salina. The X-ray structure of 4-[(2-hydroxybenzylidene)amino]benzenesulfonamide is also reported.  相似文献   

10.
The opsonic capacity of antisera to Pseudomonas aeruginosa ribosomal vaccine fractions was determined by a chemiluminescent technique. Antiserum to a vaccine fraction ("peak A") containing lipopolysaccharide (antiserum A), and antiserum to a vaccine fraction ("peak B"), which did not contain detectable amounts of lipopolysaccharide (antiserum B), were used to opsonify live or formalin-treated bacteria. Polymorphonuclear leukocytes were then stimulated by the opsonified bacteria in the presence of the chemiluminigenic probe, luminol, resulting in the observed chemiluminescence. The data obtained indicated that the antisera had comparable opsonic activity with live (untreated) bacteria. However, antiserum B had far less opsonic activity than did antiserum A when formalinized bacteria were used. Owing to the effects of formaldehyde on protein, these results were interpreted as evidence to suggest that the opsonic activities of the two antisera are dependent on different antigens on the bacterial cell surface. Antiserum A activity is probably dependent on lipopolysaccharide to a great extent, whereas antiserum B activity is most likely dependent primarily on a protein(s).  相似文献   

11.
He J  Feng L  Li J  Tao R  Wang F  Liao X  Sun Q  Long Q  Ren Y  Wan J  He H 《Bioorganic & medicinal chemistry》2012,20(5):1665-1670
As potential inhibitors of Escherichia coli pyruvate dehydrogenase complex E1 (PDHc E1), a series of novel 2-methylpyrimidine-4-ylamine derivatives were designed based on the structure of the active site of PDHc E1 and synthesized using 'click chemistry'. Their inhibitory activity in vitro against PDHc E1 and fungicidal activity were examined. Some of these compounds such as 3g, 3l, 3n, 3o, and 5b demonstrated to be effective inhibitors of PDHc E1 from E. coli and exhibited antifungal activity. SAR analysis indicated that both, the inhibitory potency against E. coli PDHc E1 and the antifungal activity of title compounds, could be increased greatly by optimizing substituent groups in the compounds. The structures of substituent group in 5-position on the 1,2,3-triazole and 4-position on the benzene ring in title compounds were found to play a pivotal role in both above-mentioned biological activities. Amongst all the compounds, compound 5b with iodine in the 5-position of 1,2,3-triazole and with nitryl group in the 4-position of benzene ring acted as the best inhibitor against PDHc E1 from E. coli. It was also found to be the most effective compound with higher antifungal activity against Rhizoctonia solani and Botrytis cinerea at the dosage of 100 μg mL(-1). Therefore, in this study, compound 5b was used as a lead compound for further optimization.  相似文献   

12.
Seventeen novel 2,5‐disubstituted benzimidazole derivatives were designed, synthesized and evaluated for their antibacterial activities. The tested compounds B1 – B4 and C2 – C6 exhibited not only good antifungal activity but also favorable broad‐spectrum antibacterial activity. Also, the lowest MIC of antibacterial and antifungal activity was 2 μg/mL and 4 μg/mL, respectively. It suggested that the structure of compound including the different substituent and its sites directly affected the efficacy of the synthesized compounds.  相似文献   

13.
Peroxidative damage to DNA was studied in rats fed either a diet with 10% tocopherol-stripped corn oil and 30 IU DL-alpha-tocopherol acetate/kg (group A), the same diet without vitamin E (group B), a diet with 24% corn oil without vitamin E (group C), or the diet of group A for 10 months and then the diet of group C for 4 months (group D). After 3, 6, 9, and 14 months of feeding the diets, body weights, motoric activities, testicular weights, and lipid-soluble fluorophores in testes were measured. Groups A and B had higher hepatic DNA template activities at 9 and 14 months than group C, and group A had higher testicular DNA template activities than groups B and C at 6, 9, and 14 months. Hepatic DNA template activity of group C decreased from 6 to 9 and from 9 to 14 months. Group C hepatic DNA transcribed less long RNA than that of groups B and D, and more short RNA than groups B and D. Group A testicular DNA transcribed more medium-length RNA than that of groups B and D, and less short RNA than that of groups B, C, and D. DNA-bound tryptophan and DNA crosslinking were inversely related to DNA template activities. DNA damage correlated with other biochemical and physiological changes that are characteristic of cellular impairment in aging and disease.  相似文献   

14.
A range of isolation procedures including washing, sonication and incubation in nutrient broth were used separately and in combination to obtain potential bacterial antagonists to Botrytis cinerea and Pythium mamillatum from the testae and cotyledons of peas and dwarf French beans. Heat treatment was also used to bias this selection towards spore-forming bacteria. Ninety-two bacterial isolates were obtained, 72 of which were provisionally characterized as species of Bacillus . Four of these Bacillus isolates (B3, C1, D4 and J7) displayed distinct antagonism in vitro against Botrytis cinerea and P. mamillatum when screened using dual culture analysis. Further characterization of these antagonists using API 50CHB biochemical profiling identified isolate D4 as Bacillus polymyxa and isolates B3, C1 and J7 as strains of B. subtilis . In vitro screening techniques, using cell-free and heat-killed extracts of liquid cultures against Botrytis cinerea , demonstrated the production of antifungal compounds by these four Bacillus antagonists. With each isolate the antifungal activity was found not to be either exclusively spore-bound nor released entirely into the medium but present in both fractions. The antifungal compounds produced by these isolates were shown to be heat-stable. Their identification, production and release require further study for exploitation as biocontrol systems.  相似文献   

15.
The effects of temperature and pH on the production of antifungal compounds and growth in sterilized soil of Enterobacter aerogenes and Bacillus subtilis, antagonists of Phytophthora cactorum, the cause of crown rot of apple trees, were studied. With E. aerogenes maximum amounts of antifungal compounds were produced between 14 and 21°C and at pH levels between 3.5 and 5.0. Bacillus subtilis produced maximum amounts of antifungal compounds between 21 and 28°C andwith pH levels between 5.0 and 8.0. P. cactorum inoculum, produced in the presence of E. aerogenes or B. subtilis at optimum temperature and pH levels, was significantly less virulent compared with controls. The optimum temperature of maximum population growth in sterilized soil for E. aerogenes was 18°C and for B. subtilis 25°C. The population growth of B. subtilis was much slower than that of E. aerogenes. Fosetyl Al stimulated the multiplication of bacteria at lower temperatures while metalaxyl had the same effect at higher temperatures. These results indicate that populations of these antagonistic bacteria increase in sterile soil up to the 33rd day from inoculation and that the fungicides fosetyl, Al and metalaxyl did not limit their multiplication and production of antifungal compounds.  相似文献   

16.
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.  相似文献   

17.
A natural red dye which is produced by the tiny insects Kerria lacca while feeding on host trees is popularly known as lac dye. Lac dye is a mixture of at least five closely related pure compounds all being anthraquinone derivatives designated as laccaic acid A, B, C, D and E. Anthraquinones isolated from different natural sources and reported to have potent antimicrobial activity. The lac dye, which is also a mixture of anthraquinone derivatives, is expected to exhibit antifungal and antibacterial activity. Lac dye cannot be used as antibacterial and antifungal agent due to its low water solubility and high polarity. Therefore, it is modified into its methyl derivative to enhance its bio-efficacy. Methylated lac dye is characterized with the help of TLC, UV–Vis spectroscopy and FT-IR, NMR analysis. An in vitro spore germination assay was carried out to evaluate the antifungal efficacy of methylated lac dye against some phytopathogenic fungi which commonly caused a various foliar diseases in crop plants viz., Alternaria solani, Curvularia lunata, Erysiphe pisi, Helminthosporium oryzae and Verticillium sp. Among the tested fungi, Verticillum sp. showed highest sensitivity, which showed 100% inhibition at 750 and 1000 µg/ml as compared to control. However, E. pisi an obligate parasite also showed varied sensitivity but at 1000 µg/ml showed 100% spore germination as compared to control. Methylated lac dye also showed strong antibacterial properties against Ralstonia solanacearum at very low concentration (40 and 50 µg/ml). Hence, lac dye may serve as potent antifungal and antibacterial agent in plant disease management.  相似文献   

18.
运用色谱学方法对一株来自云南省玉溪市元江县的土壤链霉菌Streptomyces sp.KIB-H1424的次级代谢产物进行分离纯化,得到6个单体化合物。运用NMR、MS及与文献数据对比等手段,确定其为一系列的烷基间苯二酚类似物,其中包括1个新的烷基间苯二酚类化合物Adiposatatin E(1)以及5个已知的烷基间苯二酚类似物Adipostatin A(2)、Adiposatin B(3)、Adipostatin C(4)、Adipostatin D(5)和5-Heptadecyl-1,3-benzenediol(6)。运用滤纸片法测定6个化合物对几种病原细菌和真菌的抑菌活性,发现化合物1~6不具有显著的抑菌活性。  相似文献   

19.
A survey of leaf surface constituents in the family Lamiaceae using HPLC with diode array detection revealed the presence of two characteristic phenolic compounds in many species. The distribution of these phenolics in the Lamiaceae was found to be of taxonomic significance, as they were present in the great majority of species investigated for the subfamily Nepetoideae, including representatives of the well-known genera of culinary herbs, mint, rosemary, sage, thyme and basil. In contrast, they were absent from species of the other subfamilies of Lamiaceae studied and from the related families Verbenaceae, Scrophulariaceae, Acanthaceae and Buddlejaceae. The compounds were isolated from Plectranthus crassus and identified by NMR spectroscopy as the known caffeic acid esters (Z,E)-[2-(3,5-dihydroxyphenyl)ethenyl] 3-(3,4-dihydroxyphenyl)-2-propenoate and (Z,E)-[2-(3,4-dihydroxyphenyl)ethenyl] 3-(3,4-dihydroxyphenyl)-2-propenoate, for which the trivial names nepetoidins A and B are proposed. The presence of this pair of caffeic acid esters adds another character to the chemical, palynological and embryological features distinguishing the Nepetoideae from the other subfamilies of Lamiaceae and related families, and supports the view that the Nepetoideae are a specialised and monophyletic group within the family. Nepetoidin B was shown to have a greater antioxidant activity than gallic, rosmarinic and caffeic acids, and showed activity as an insect phagostimulant. Both compounds were antifungal.  相似文献   

20.
Bioassay-guided separation of the antifungal constituents of the Chinese liverwort Marchantia polymorpha L. (Marchantiaceae) led to the isolation of seven bis[bibenzyl]-type macrocycles. On the basis of NMR and MS analyses, the three new compounds plagiochin E (1), 13,13'-O-isoproylidenericcardin D (4), and riccardin H (7) were identified, together with four known compounds: marchantin E (2), neomarchantin A (3), marchantin A (5), and marchantin B (6). Their antifungal activities against Candida albicans were determined by TLC bioautography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号